Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 165(4): 393-400, 2012 May.
Article in English | MEDLINE | ID: mdl-22405878

ABSTRACT

A range of evidence from animal, clinical and epidemiological studies indicates that highly polyunsaturated acyl chains play important roles in development, cognition, vision and other aspects of neurological function. In a number of these studies n3 polyunsaturated fatty acids (PUFAs) appear to be more efficacious than n6 PUFAs. In a previous study of retinal rod outer segments obtained from rats raised on either an n3 adequate or deficient diet, we demonstrated that the replacement of 22:6n3 by 22:5n6 in the n3 deficient rats led to functional deficits in each step in the visual signaling process (Niu et al., 2004). In this study, we examined rhodopsin and phosphodiesterase function and acyl chain packing properties in membranes consisting of phosphatidylcholines with sn-1=18:0, and sn-2=22:6n3, 22:5n6, or 22:5n3 in order to determine if differences in function are due to the loss of one double bond or due to differences in double bond location. At 37 °C the n6 lipid shifted the equilibrium between the active metarhodopsin II (MII) state and inactive metarhodopsin I (MI) state towards MI. In addition, 22:5n6 reduced the rates of MII formation and MII-transducin complex formation by 2- and 6-fold, respectively. At a physiologically relevant level of rhodopsin light stimulation, the activity of phosphodiesterase was reduced by 50% in the 22:5n6 membrane, relative to either of the n3 membranes. Activity levels in the two n3 membranes were essentially identical. Ensemble acyl chain order was assessed with time-resolved fluorescence measurements of the membrane probe diphenylhexatriene (DPH). Analysis in terms of the orientational distribution of DPH showed that acyl chain packing in the two n3 membranes is quite similar, while in the 22:5n6 membrane there was considerably less packing disorder in the bilayer midplane. These results demonstrate that the n3 bond configuration uniquely optimizes the early steps in signaling via a mechanism which may involve acyl chain packing deep in the bilayer.


Subject(s)
Docosahexaenoic Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Lipid Bilayers/metabolism , Rhodopsin/metabolism , Animals , Cattle , Docosahexaenoic Acids/chemistry , Fatty Acids, Unsaturated/chemistry , Lipid Bilayers/chemistry , Phosphoric Diester Hydrolases/metabolism , Protein Conformation , Rhodopsin/isolation & purification , Rod Cell Outer Segment/chemistry , Signal Transduction
2.
Biochemistry ; 44(11): 4458-65, 2005 Mar 22.
Article in English | MEDLINE | ID: mdl-15766276

ABSTRACT

The consumption of trans fatty acid (TFA) is linked to the elevation of LDL cholesterol and is considered to be a major health risk factor for coronary heart disease. Despite several decades of extensive research on this subject, the underlying mechanism of how TFA modulates serum cholesterol levels remains elusive. In this study, we examined the molecular interaction of TFA-derived phospholipid with cholesterol and the membrane receptor rhodopsin in model membranes. Rhodopsin is a prototypical member of the G-protein coupled receptor family. It has a well-characterized structure and function and serves as a model membrane receptor in this study. Phospholipid-cholesterol affinity was quantified by measuring cholesterol partition coefficients. Phospholipid-receptor interactions were probed by measuring the level of rhodopsin activation. Our study shows that phospholipid derived from TFA had a higher membrane cholesterol affinity than their cis analogues. TFA phospholipid membranes also exhibited a higher acyl chain packing order, which was indicated by the lower acyl chain packing free volume as determined by DPH fluorescence and the higher transition temperature for rhodopsin thermal denaturation. The level of rhodopsin activation was diminished in TFA phospholipids. Since membrane cholesterol level and membrane receptors are involved in the regulation of cholesterol homeostasis, the combination of higher cholesterol content and reduced receptor activation associated with the presence of TFA-phospholipid could be factors contributing to the elevation of LDL cholesterol.


Subject(s)
Cholesterol/metabolism , Phospholipids/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Rhodopsin/metabolism , Trans Fatty Acids/metabolism , Animals , Binding Sites , Calorimetry, Differential Scanning , Cattle , Cholesterol/chemistry , Diphenylhexatriene/chemistry , Docosahexaenoic Acids/metabolism , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Glycerylphosphorylcholine/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , Phospholipids/chemistry , Photoreceptor Cells, Vertebrate/chemistry , Rhodopsin/antagonists & inhibitors , Spectrometry, Fluorescence , Stereoisomerism , Trans Fatty Acids/chemistry
3.
J Biol Chem ; 279(30): 31098-104, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15145938

ABSTRACT

The fatty acid (FA) docosahexaenoic acid (DHA, 22: 6n-3) is highly enriched in membrane phospholipids of the central nervous system and retina. Loss of DHA because of n-3 FA deficiency leads to suboptimal function in learning, memory, olfactory-based discrimination, spatial learning, and visual acuity. G protein-coupled receptor (GPCR) signal transduction is a common signaling motif in these neuronal pathways. Here we investigated the effect of n-3 FA deficiency on GPCR signaling in retinal rod outer segment (ROS) membranes isolated from rats raised on n-3-adequate or -deficient diets. ROS membranes of second generation n-3 FA-deficient rats had approximately 80% less DHA than n-3-adequate rats. DHA was replaced by docosapentaenoic acid (22:5n-6), an n-6 FA. This replacement correlated with desensitization of visual signaling in n-3 FA-deficient ROS, as evidenced by reduced rhodopsin activation, rhodopsin-transducin (G(t)) coupling, cGMP phosphodiesterase activity, and slower formation of metarhodopsin II (MII) and the MII-G(t) complex relative to n-3 FA-adequate ROS. ROS membranes from n-3 FA-deficient rats exhibited a higher degree of phospholipid acyl chain order relative to n-3 FA-adequate rats. These findings reported here provide an explanation for the reduced amplitude and delayed response of the electroretinogram a-wave observed in n-3 FA deficiency in rodents and nonhuman primates. Because members of the GPCR family are widespread in signaling pathways in the nervous system, the effect of reduced GPCR signaling due to the loss of membrane DHA may serve as an explanation for the suboptimal neural signaling observed in n-3 FA deficiency.


Subject(s)
Eye Proteins/metabolism , Fatty Acids, Omega-3/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Rod Cell Outer Segment/metabolism , Animals , Docosahexaenoic Acids/metabolism , Electroretinography , Female , Membrane Lipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Rats , Rats, Long-Evans , Signal Transduction , Transducin
4.
J Pediatr ; 143(4 Suppl): S80-6, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14597917

ABSTRACT

OBJECTIVE: To assess the effects of n-3 polyunsaturated phospholipid acyl chains on the initial steps in G-protein-coupled signaling. STUDY DESIGN: Isolated components of the visual signal transduction system, rhodopsin, G protein (G(t)), and phosphodiesterase (PDE), were reconstituted in membranes containing various levels of n-3 polyunsaturated phospholipid acyl chains. In addition, rod outer segment disk membranes containing these components were purified from rats raised on n-3-deficient and n-3-adequate diets. The conformation change of rhodopsin, coupling of rhodopsin to G(t), and PDE activity were each measured separately. RESULTS: The ability of rhodopsin to form the active metarhodopsin II conformation and bind G(t) were both compromised in membranes with reduced levels of n-3 polyunsaturated acyl chains. The activity of PDE, directly related to the integrated cellular response, was reduced in all membranes lacking or deficient in n-3 polyunsaturated acyl chains. PDE activity in membranes containing 22:5n-6 PC was 50% lower than in membranes containing either 22:6n-3 PC or 22:5n-3 PC. CONCLUSIONS: The earliest events in G-protein-coupled signaling; receptor conformation change, receptor-G-protein binding, and PDE activity are reduced in membranes lacking n-3 polyunsaturated acyl chains. Efficient and rapid propagation of G-protein-coupled signaling requires polyunsaturated n-3 phospholipid acyl chains.


Subject(s)
Fatty Acids, Omega-3/physiology , Receptors, G-Protein-Coupled/physiology , Rhodopsin/analogs & derivatives , Rhodopsin/physiology , Signal Transduction/physiology , Humans , Molecular Conformation , Retina/physiology , Rod Cell Outer Segment/physiology , Structure-Activity Relationship
5.
Lipids ; 38(4): 437-43, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12848291

ABSTRACT

The effect of phospholipid acyl chain and cholesterol composition on G protein-coupled signaling was studied in native rod outer segment (ROS) disk and reconstituted membranes by measuring several steps in the visual transduction pathway. The cholesterol content of disk membranes was varied from 4 to 38 mol% cholesterol with methyl-beta-cyclodextrin. The visual signal transduction system [rhodopsin, G protein (G(t)), and phosphodiesterase (PDE)] was reconstituted with membranes containing various levels of phospholipid acyl chain unsaturation, with and without cholesterol. ROS membranes from rats raised on n-3 fatty acid-deficient and -adequate diets were also studied. The ability of rhodopsin to form the active metarhodopsin II conformation and bind G(t) was diminished by a reduction in the level of DHA (22:6n-3) acyl chains or an increase in membrane cholesterol. DHA acyl chain containing phospholipids minimized the inhibitory effects of cholesterol on the rate of rhodopsin-G(t) coupling. The activity of PDE, which is a measure of the integrated signal response, was reduced in membranes lacking or deficient in DHA acyl chains. PDE activity in membranes containing docosapentaenoic acid (DPA, 22:5n-6) acyl chains, which replace DHA in n-3 fatty acid deficiency, was 50% lower than in DHA-containing membranes. Our results indicate that efficient and rapid propagation of G protein-coupled signaling is optimized by DHA phospholipid acyl chains.


Subject(s)
Docosahexaenoic Acids/metabolism , Phospholipids/physiology , Receptors, G-Protein-Coupled/physiology , Acylation , Animals , Cattle , Cholesterol/pharmacology , Cyclodextrins/chemistry , Fluorescence Polarization , Kinetics , Phosphoric Diester Hydrolases/metabolism , Photobleaching , Rhodopsin/analogs & derivatives , Rhodopsin/physiology , Rod Cell Outer Segment/physiology , Signal Transduction , Structure-Activity Relationship
6.
Biophys J ; 83(6): 3408-15, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12496107

ABSTRACT

Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.


Subject(s)
Cyclodextrins/chemistry , Liposomes/chemistry , Membrane Lipids/chemistry , Membrane Microdomains/chemistry , Phospholipids/chemistry , Cell Membrane/chemistry , Lipids/chemistry , Macromolecular Substances , Membranes, Artificial , Molecular Conformation , Molecular Structure , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylserines/chemistry , Sphingomyelins/chemistry
7.
J Mol Biol ; 322(2): 441-61, 2002 Sep 13.
Article in English | MEDLINE | ID: mdl-12217702

ABSTRACT

Residual dipolar couplings for a ligand that is in fast exchange between a free state and a state where it is bound to a macroscopically ordered membrane protein carry precise information on the structure and orientation of the bound ligand. The couplings originate in the bound state but can be detected on the free ligand using standard high resolution NMR. This approach is used to study an analog of the C-terminal undecapeptide of the alpha-subunit of the heterotrimeric G protein transducin when bound to photo-activated rhodopsin. Rhodopsin is the major constituent of disk-shaped membrane vesicles from rod outer segments of bovine retinas, which align spontaneously in the NMR magnet. Photo-activation of rhodopsin triggers transient binding of the peptide, resulting in measurable dipolar contributions to 1J(NH) and 1J(CH) splittings. These dipolar couplings report on the time-averaged orientation of bond vectors in the bound peptide relative to the magnetic field, i.e. relative to the membrane normal. Approximate distance restraints of the bound conformation were derived from transferred NOEs, as measured from the difference of NOESY spectra recorded prior to and after photo-activation. The N-terminal eight residues of the bound undecapeptide adopt a near-ideal alpha-helical conformation. The helix is terminated by an alpha(L) type C-cap, with Gly9 at the C' position in the center of the reverse turn. The angle between the helix axis and the membrane normal is 40 degrees (+/-4) degrees. Peptide protons that make close contact with the receptor are identified by analysis of the NOESY cross-relaxation pattern and include the hydrophobic C terminus of the peptide.


Subject(s)
Magnetic Resonance Spectroscopy , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Rhodopsin/chemistry , Rhodopsin/metabolism , Transducin/chemistry , Transducin/metabolism , Animals , Binding Sites , Cattle , Kinetics , Models, Molecular , Protein Binding , Protein Structure, Secondary , Rhodopsin/analogs & derivatives
8.
J Biol Chem ; 277(23): 20139-45, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-11889130

ABSTRACT

The effect of cholesterol on rod outer segment disk membrane structure and rhodopsin activation was investigated. Disk membranes with varying cholesterol concentrations were prepared using methyl-beta-cyclodextrin as a cholesterol donor or acceptor. Cholesterol exchange followed a simple equilibrium partitioning model with a partition coefficient of 5.2 +/- 0.8 in favor of the disk membrane. Reduced cholesterol in disk membranes resulted in a higher proportion of photolyzed rhodopsin being converted to the G protein-activating metarhodopsin II (MII) conformation, whereas enrichment of cholesterol reduced the extent of MII formation. Time-resolved fluorescence anisotropy measurements using 1,6-diphenyl-1,3,5-hexatriene showed that increasing cholesterol reduced membrane acyl chain packing free volume as characterized by the parameter f(v). The level of MII formed showed a positive linear correlation with f(v) over the range of 4 to 38 mol % cholesterol. In addition, the thermal stability of rhodopsin increased with mol % of cholesterol in disk membranes. No evidence was observed for the direct interaction of cholesterol with rhodopsin in either its agonist- or antagonist-bound form. These results indicate that cholesterol mediates the function of the G protein-coupled receptor, rhodopsin, by influencing membrane lipid properties, i.e. reducing acyl chain packing free volume, rather than interacting specifically with rhodopsin.


Subject(s)
Cholesterol/metabolism , Cyclodextrins/pharmacology , Retinal Rod Photoreceptor Cells/drug effects , beta-Cyclodextrins , Calorimetry, Differential Scanning , Cell Membrane/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Rhodopsin/metabolism , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...