Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 150(23): 234702, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31228911

ABSTRACT

Adsorption at an attractive surface in a system with particles self-assembling into small clusters is studied by molecular dynamics simulation. We assume Lennard-Jones plus repulsive Yukawa tail interactions and focus on small densities. The relative increase in the temperature at the critical cluster concentration near the attractive surface (CCCS) shows a power-law dependence on the strength of the wall-particle attraction. At temperatures below the CCCS, the adsorbed layer consists of undeformed clusters if the wall-particle attraction is not too strong. Above the CCCS or for strong attraction leading to flattening of the adsorbed aggregates, we obtain a monolayer that for strong or very strong attraction consists of flattened clusters or stripes, respectively. The accumulated repulsion from the particles adsorbed at the wall leads to a repulsive barrier that slows down the adsorption process, and the accession time grows rapidly with the strength of the wall-particle attraction. Beyond the adsorbed layer of particles, a depletion region of a thickness comparable with the range of the repulsive tail of interactions occurs, and the density in this region decreases with increasing strength of the wall-particle attraction. At larger separations, the exponentially damped oscillations of density agree with theoretical predictions for self-assembling systems. Structural and thermal properties of the bulk are also determined. In particular, a new structural crossover associated with the maximum of the specific heat and a double-peaked histogram of the cluster size distribution are observed.

2.
Rep Prog Phys ; 76(3): 034601, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23439452

ABSTRACT

Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid-vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid-vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417-28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid-vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P(1)/(a + P(2)), where a is the radius of the evaporating droplet, t is time and P(1) and P(2) are two parameters. P(1) = -λΔT/(q(eff)ρ(L)), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet and the vapour far from the interface, q(eff) is the enthalpy of evaporation per unit mass and ρ(L) is the liquid density. The P(2) parameter is the kinetic correction proportional to the evaporation coefficient. P(2) = 0 only in the absence of temperature discontinuity at the interface. We discuss various models and problems in the determination of the evaporation coefficient and discuss evaporation scenarios in the case of single- and multi-component systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...