Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(41): 28912-28930, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37790092

ABSTRACT

The structural, dynamical, electro-optical, mechanical, and thermal characteristics of the newly synthesized intermetallic compounds Ru4Al3B2 and Ru9Al3B8 have been studied under ambient and elevated pressure through density functional theory (DFT). The obtained lattice parameters of the compounds are consistent with the experimental values. The metallic character of these compounds is established by the band structure and density of states (DOS). The electronic charge density distribution and bond analysis imply that Ru4Al3B2 and Ru9Al3B8 have mainly both ionic and covalent bonding. The non-negative phonon dispersion frequency of the compounds reaffirms their dynamical stability. Both compounds are tough as well as have high melting points, and hence, can be applied in harsh conditions. Mechanical properties are significantly improved under pressure. Thermal barrier coating (TBC) is a possible field of application for both compounds. The different thermal properties such as the Debye temperature (ΘD), Grüneisen parameter (γ), melting temperature (Tm), minimum thermal conductivity (Kmin) and lattice thermal conductivity (κph) of these compounds have been studied to figure out the suitable application areas in thermally demanding situations. The pressure and temperature dependent bulk modulus (B) and other thermodynamic properties have also been analyzed, which suggested that the present compounds are strong candidates for device applications at high temperature and pressure. Owing to their high optical absorptivity and reflectivity in the UV region, they are also candidates for UV-based applications. Furthermore, they also have applicability in the fields of electronics, aviation, energy storage, and supercapacitor devices for their superior electronic, thermal and mechanical properties.

2.
Sci Rep ; 13(1): 10246, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353553

ABSTRACT

The cubic phase of CsNbO3 (CNO) perovskite has been hypothesized to investigate the elastic, electronic, photocatalytic, and optical properties for various technological applications using first-principles method. The pressure dependent structural stability has been confirmed from computed elastic constants. Relatively high value of elastic moduli, large hardness and toughness suggested that CNO would be applicable to design industrial machineries. The ductile to brittle transition is noticed at 20 GPa. The indirect bandgap of CNO proclaims its suitability for photovoltaic and IR photodetector applications. The total and partial density of states are calculated to show in evidence the contribution of individual atomic orbitals in the formation of bands. The pressure changes orbitals hybridization which can be substantiated by the change in the bandgap. Strong covalency of the Nb-O bond and antibonding character of Cs-O have been anticipated by the Mulliken population analysis and by the contour maps of electron charge density. The low carrier effective mass and high mobility carriers predict the good electrical conductivity of the material. The calculated values of conduction and valance band edge potential illustrate the excellent water-splitting and environmental pollutants degradation properties of CNO.


Subject(s)
Electronics , Environmental Pollutants , Elastic Modulus , Electric Conductivity , Excipients
SELECTION OF CITATIONS
SEARCH DETAIL
...