Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4729, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830897

ABSTRACT

Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Cohesins , Chromosome Segregation , Mutation , Chromatids/metabolism , Chromatids/genetics , Evolution, Molecular , Meiosis/genetics
2.
Mol Cell ; 83(17): 3049-3063.e6, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37591243

ABSTRACT

Cohesin connects CTCF-binding sites and other genomic loci in cis to form chromatin loops and replicated DNA molecules in trans to mediate sister chromatid cohesion. Whether cohesin uses distinct or related mechanisms to perform these functions is unknown. Here, we describe a cohesin hinge mutant that can extrude DNA into loops but is unable to mediate cohesion in human cells. Our results suggest that the latter defect arises during cohesion establishment. The observation that cohesin's cohesion and loop extrusion activities can be partially separated indicates that cohesin uses distinct mechanisms to perform these two functions. Unexpectedly, the same hinge mutant can also not be stopped by CTCF boundaries as well as wild-type cohesin. This suggests that cohesion establishment and cohesin's interaction with CTCF boundaries depend on related mechanisms and raises the possibility that both require transient hinge opening to entrap DNA inside the cohesin ring.


Subject(s)
Cell Cycle Proteins , Chromatids , Humans , Chromatids/genetics , Binding Sites , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Cohesins
3.
Proc Natl Acad Sci U S A ; 119(18): e2201029119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476527

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a developmental multisystem disorder frequently associated with mutations in NIPBL. CdLS is thought to arise from developmental gene regulation defects, but how NIPBL mutations cause these is unknown. Here we show that several NIPBL mutations impair the DNA loop extrusion activity of cohesin. Because this activity is required for the formation of chromatin loops and topologically associating domains, which have important roles in gene regulation, our results suggest that defects in cohesin-mediated loop extrusion contribute to the etiology of CdLS by altering interactions between developmental genes and their enhancers.


Subject(s)
De Lange Syndrome , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA/genetics , De Lange Syndrome/genetics , Humans , Mutation , Cohesins
4.
Cell ; 184(21): 5448-5464.e22, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34624221

ABSTRACT

Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin's hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL "jumps ship" from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/chemistry , Nucleic Acid Conformation , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , DNA/metabolism , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Hydrolysis , Kinetics , Microscopy, Atomic Force , Models, Molecular , Nuclear Proteins/metabolism , Protein Conformation , Cohesins
5.
EMBO J ; 35(24): 2671-2685, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27799150

ABSTRACT

The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Transcription, Genetic , CCCTC-Binding Factor , Humans , Repressor Proteins/metabolism , Single Molecule Imaging , Time Factors , Cohesins
6.
Curr Biol ; 26(17): 2370-8, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27524485

ABSTRACT

Partitioning of the genome requires kinetochores, large protein complexes that mediate dynamic attachment of chromosomes to the spindle. Kinetochores contain two supramolecular protein assemblies. The ten-protein KMN network harbors key microtubule-binding sites in the Ndc80 complex and mediates assembly of checkpoint complexes via the KNL-1/Spc105 protein [1, 2]. As KMN does not contact DNA directly, it relies on different centromere-binding proteins for recruitment and cell-cycle-dependent assembly. These proteins are collectively referred to as the CCAN (constitutive centromere-associated network) [2-4]. The molecular mechanisms by which CCAN subunits associate, however, have remained incompletely defined. In particular, it is unclear how CCAN subunits facilitate the assembly of a microtubule-binding interface that contains multiple Ndc80 molecules bound to different receptors [5]. Here, we dissect molecular mechanisms that underlie targeting of the CCAN subunit Cnn1/CENP-T to the sequence-determined point centromeres of budding yeast. Systematic quantitative mass spectrometry experiments reveal association dependencies within the yeast CCAN network. We show that evolutionarily conserved residues in the histone-fold domain of Cnn1 are required for the formation of a stable five-subunit CCAN subassembly with the Ctf3 complex. Cnn1 localizes in a Ctf3-dependent manner to the core of the yeast point centromere, overlapping with the yeast CENP-A protein Cse4. By arranging the N-terminal domains of the CCAN subunits Mcm16, Mcm22, and Cnn1 into close proximity, the Ctf3c-Cnn1-Wip1 complex configures a composite interaction site for two molecules of the Ndc80 complex. Our experiments show how cooperative assembly mechanisms organize the microtubule-binding interface of the kinetochore.


Subject(s)
Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Kinetochores/metabolism
7.
Proc Natl Acad Sci U S A ; 113(19): E2570-8, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27114510

ABSTRACT

Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/metabolism , Mitosis/physiology , Anaphase-Promoting Complex-Cyclosome/chemistry , Binding Sites , Cdc20 Proteins/chemistry , Enzyme Activation , HeLa Cells , Humans , Mutagenesis, Site-Directed/methods , Phosphorylation , Protein Binding , Transfection/methods
8.
Elife ; 42015 Jan 27.
Article in English | MEDLINE | ID: mdl-25626168

ABSTRACT

Motor proteins of the conserved kinesin-14 family have important roles in mitotic spindle organization and chromosome segregation. Previous studies have indicated that kinesin-14 motors are non-processive enzymes, working in the context of multi-motor ensembles that collectively organize microtubule networks. In this study, we show that the yeast kinesin-14 Kar3 generates processive movement as a heterodimer with the non-motor proteins Cik1 or Vik1. By analyzing the single-molecule properties of engineered motors, we demonstrate that the non-catalytic domain has a key role in the motility mechanism by acting as a 'foothold' that allows Kar3 to bias translocation towards the minus end. This mechanism rivals the speed and run length of conventional motors, can support transport of the Ndc80 complex in vitro and is critical for Kar3 function in vivo. Our findings provide an example for a non-conventional translocation mechanism and can explain how Kar3 substitutes for key functions of Dynein in the yeast nucleus.


Subject(s)
Microtubule-Associated Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Catalytic Domain , Dimerization , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Subcellular Fractions/metabolism
9.
J Cell Biol ; 206(4): 509-24, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25135934

ABSTRACT

Kinetochores are megadalton-sized protein complexes that mediate chromosome-microtubule interactions in eukaryotes. How kinetochore assembly is triggered specifically on centromeric chromatin is poorly understood. Here we use biochemical reconstitution experiments alongside genetic and structural analysis to delineate the contributions of centromere-associated proteins to kinetochore assembly in yeast. We show that the conserved kinetochore subunits Ame1(CENP-U) and Okp1(CENP-Q) form a DNA-binding complex that associates with the microtubule-binding KMN network via a short Mtw1 recruitment motif in the N terminus of Ame1. Point mutations in the Ame1 motif disrupt kinetochore function by preventing KMN assembly on chromatin. Ame1-Okp1 directly associates with the centromere protein C (CENP-C) homologue Mif2 to form a cooperative binding platform for outer kinetochore assembly. Our results indicate that the key assembly steps, CENP-A recognition and outer kinetochore recruitment, are executed through different yeast constitutive centromere-associated network subunits. This two-step mechanism may protect against inappropriate kinetochore assembly similar to rate-limiting nucleation steps used by cytoskeletal polymers.


Subject(s)
Autoantigens/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/genetics , Cell Cycle Proteins/genetics , Centromere/genetics , Centromere Protein A , Chromatin/genetics , DNA-Binding Proteins/genetics , Microtubule-Associated Proteins/genetics , Multiprotein Complexes/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment
10.
EMBO J ; 32(3): 409-23, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23334295

ABSTRACT

The Ndc80 complex is the key microtubule-binding element of the kinetochore. In contrast to the well-characterized interaction of Ndc80-Nuf2 heads with microtubules, little is known about how the Spc24-25 heterodimer connects to centromeric chromatin. Here, we present molecular details of Spc24-25 in complex with the histone-fold protein Cnn1/CENP-T illustrating how this connection ultimately links microtubules to chromosomes. The conserved Ndc80 receptor motif of Cnn1 is bound as an α helix in a hydrophobic cleft at the interface between Spc24 and Spc25. Point mutations that disrupt the Ndc80-Cnn1 interaction also abrogate binding to the Mtw1 complex and are lethal in yeast. We identify a Cnn1-related motif in the Dsn1 subunit of the Mtw1 complex, necessary for Ndc80 binding and essential for yeast growth. Replacing this region with the Cnn1 peptide restores viability demonstrating functionality of the Ndc80-binding module in different molecular contexts. Finally, phosphorylation of the Cnn1 N-terminus coordinates the binding of the two competing Ndc80 interaction partners. Together, our data provide structural insights into the modular binding mechanism of the Ndc80 complex to its centromere recruiters.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Models, Molecular , Nuclear Proteins/genetics , Protein Conformation , Saccharomyces cerevisiae Proteins/genetics , Calorimetry , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Computational Biology , Crystallization , Kinetochores/metabolism , Microscopy, Fluorescence , Microtubules/metabolism , Mutagenesis, Site-Directed , Nuclear Proteins/metabolism , Phosphorylation , Saccharomyces cerevisiae Proteins/metabolism
11.
Mol Biol Cell ; 23(19): 3873-81, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22875994

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a key process in cancer progression and metastasis, requiring cooperation of the epidermal growth factor/Ras with the transforming growth factor-ß (TGF-ß) signaling pathway in a multistep process. The molecular mechanisms by which Ras signaling contributes to EMT, however, remain elusive to a large extent. We therefore examined the transcriptional repressor Ets2-repressor factor (ERF)-a bona fide Ras-extracellular signal-regulated kinase/mitogen-activated protein kinase effector-for its ability to interfere with TGF-ß-induced EMT in mammary epithelial cells (EpH4) expressing oncogenic Ras (EpRas). ERF-overexpressing EpRas cells failed to undergo TGF-ß-induced EMT, formed three-dimensional tubular structures in collagen gels, and retained expression of epithelial markers. Transcriptome analysis indicated that TGF-ß signaling through Smads was mostly unaffected, and ERF suppressed the TGF-ß-induced EMT via Semaphorin-7a repression. Forced expression of Semaphorin-7a in ERF-overexpressing EpRas cells reestablished their ability to undergo EMT. In contrast, inhibition of Semaphorin-7a in the parental EpRas cells inhibited their ability to undergo TGF-ß-induced EMT. Our data suggest that oncogenic Ras may play an additional role in EMT via the ERF, regulating Semaphorin-7a and providing a new interconnection between the Ras- and the TGF-ß-signaling pathways.


Subject(s)
Antigens, CD/physiology , Epithelial Cells/physiology , Mammary Glands, Animal/cytology , Repressor Proteins/physiology , Semaphorins/physiology , ras Proteins/metabolism , Amino Acid Substitution , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Female , MAP Kinase Signaling System , Mice , Mutagenesis, Site-Directed , Phosphorylation , Protein Processing, Post-Translational , Repressor Proteins/genetics , Repressor Proteins/metabolism , Semaphorins/genetics , Semaphorins/metabolism , Transcriptome , Transforming Growth Factor beta/metabolism
12.
Nat Cell Biol ; 14(6): 604-13, 2012 May 06.
Article in English | MEDLINE | ID: mdl-22561346

ABSTRACT

Centromeres direct the assembly of kinetochores, microtubule-attachment sites that allow chromosome segregation on the mitotic spindle. Fundamental differences in size and organization between evolutionarily distant eukaryotic centromeres have in many cases obscured general principles of their function. Here we demonstrate that centromere-binding proteins are highly conserved between budding yeast and humans. We identify the histone-fold protein Cnn1(CENP-T) as a direct centromere receptor of the microtubule-binding Ndc80 complex. The amino terminus of Cnn1 contains a conserved peptide motif that mediates stoichiometric binding to the Spc24-25 domain of the Ndc80 complex. Consistent with the critical role of this interaction, artificial tethering of the Ndc80 complex through Cnn1 allows mini-chromosomes to segregate in the absence of a natural centromere. Our results reveal the molecular function of CENP-T proteins and demonstrate how the Ndc80 complex is anchored to centromeres in a manner that couples chromosome movement to spindle dynamics.


Subject(s)
Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Conserved Sequence , Cytoskeletal Proteins , Evolution, Molecular , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Molecular Sequence Data , Nuclear Proteins/genetics , Protein Binding , Sequence Alignment , Calponins
13.
EMBO Mol Med ; 4(4): 283-97, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22323443

ABSTRACT

The large difference in phenotypes among tumour populations may stem from the stochastic origin of tumours from distinct cells - tumour cells are assumed to retain the phenotypes of the cells from which they derive. Yet, functional studies addressing the cellular origin of leukaemia are lacking. Here we show that the cells of origin of both, BCR/ABL-induced chronic myeloid (CML) and B-cell acute lymphoid leukaemia (B-ALL), resemble long-term haematopoietic stem cells (LT-HSCs). During disease-maintenance, CML LT-HSCs persist to function as cancer stem cells (CSCs) that maintain leukaemia and require signalling by the transcription factor STAT5. In contrast, B-ALL LT-HSCs differentiate into CSCs that correspond to pro-B cells. This transition step requires a transient IL-7 signal and is lost in IL-7Rα-deficient cells. Thus, in BCR/ABLp185(+) B-ALL and BCR/ABLp210(+) CML, the final phenotype of the tumour as well as the abundance of CSCs is dictated by diverging differentiation fates of their common cells of origin.


Subject(s)
Cell Transformation, Neoplastic/pathology , Leukemia, Basophilic, Acute/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Transformation, Neoplastic/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Basophilic, Acute/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/metabolism , STAT5 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...