Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1054, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36828817

ABSTRACT

Electron beam quality is paramount for X-ray pulse production in free-electron-lasers (FELs). State-of-the-art linear accelerators (linacs) can deliver multi-GeV electron beams with sufficient quality for hard X-ray-FELs, albeit requiring km-scale setups, whereas plasma-based accelerators can produce multi-GeV electron beams on metre-scale distances, and begin to reach beam qualities sufficient for EUV FELs. Here we show, that electron beams from plasma photocathodes many orders of magnitude brighter than state-of-the-art can be generated in plasma wakefield accelerators (PWFAs), and then extracted, captured, transported and injected into undulators without significant quality loss. These ultrabright, sub-femtosecond electron beams can drive hard X-FELs near the cold beam limit to generate coherent X-ray pulses of attosecond-Angstrom class, reaching saturation after only 10 metres of undulator. This plasma-X-FEL opens pathways for advanced photon science capabilities, such as unperturbed observation of electronic motion inside atoms at their natural time and length scale, and towards higher photon energies.


Subject(s)
Electrons , Particle Accelerators , X-Rays , Lasers , Photons
2.
Nat Commun ; 11(1): 4753, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32958741

ABSTRACT

Metre-scale plasma wakefield accelerators have imparted energy gain approaching 10 gigaelectronvolts to single nano-Coulomb electron bunches. To reach useful average currents, however, the enormous energy density that the driver deposits into the wake must be removed efficiently between shots. Yet mechanisms by which wakes dissipate their energy into surrounding plasma remain poorly understood. Here, we report picosecond-time-resolved, grazing-angle optical shadowgraphic measurements and large-scale particle-in-cell simulations of ion channels emerging from broken wakes that electron bunches from the SLAC linac generate in tenuous lithium plasma. Measurements show the channel boundary expands radially at 1 million metres-per-second for over a nanosecond. Simulations show that ions and electrons that the original wake propels outward, carrying 90 percent of its energy, drive this expansion by impact-ionizing surrounding neutral lithium. The results provide a basis for understanding global thermodynamics of multi-GeV plasma accelerators, which underlie their viability for applications demanding high average beam current.

3.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180181, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230570

ABSTRACT

A current challenge that is facing the plasma wakefield accelerator (PWFA) community is transverse beam emittance preservation. This can be achieved by balancing the natural divergence of the beam against the strong focusing force provided by the PWFA plasma source in a scheme referred to as beam matching. One method to accomplish beam matching is through the gradual focusing of a beam with a plasma density ramp leading into the bulk plasma. Here, the beam dynamics in a Gaussian plasma density ramp are considered, and an empirical formula is identified that gives the ramp length and beam vacuum waist location needed to achieve near-perfect matching. The method uses only the beam vacuum waist beta function as an input. Numerical studies show that the Gaussian ramp focusing formula is robust for beta function demagnification factors spanning more than an order of magnitude with experimentally favourable tolerances for future PWFA research facilities. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

4.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180184, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230576

ABSTRACT

This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. The physics of the processes of ionization and injection are explored through OSIRIS simulations. Experimental evidence showing similar features are presented from the data obtained in the E217 experiment at the FACET facility of the SLAC National Laboratory. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

5.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180173, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230577

ABSTRACT

Beam-driven plasma wakefield acceleration (PWFA) has demonstrated significant progress during the past two decades of research. The new Facility for Advanced Accelerator Experimental Tests (FACET) II, currently under construction, will provide 10 GeV electron beams with unprecedented parameters for the next generation of PWFA experiments. In the context of the FACET II facility, we present simulation results on expected betatron radiation and its potential application to diagnose emittance preservation and hosing instability in the upcoming PWFA experiments. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

6.
Phys Rev Lett ; 120(12): 124802, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694092

ABSTRACT

Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

7.
Sci Rep ; 7(1): 14180, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079817

ABSTRACT

High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. In these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. The results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

8.
Nat Commun ; 7: 12483, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27527569

ABSTRACT

The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

9.
Nat Commun ; 7: 11898, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27312720

ABSTRACT

Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

10.
Nature ; 524(7566): 442-5, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26310764

ABSTRACT

Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.

11.
Nature ; 515(7525): 92-5, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25373678

ABSTRACT

High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a compact and affordable accelerator technology.

12.
Phys Rev Lett ; 113(12): 121802, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25279622

ABSTRACT

We present the results of searches for nucleon decay via n→ν[over ¯]π0 and p→ν[over ¯]π+ using data from a combined 172.8 kt·yr exposure of Super-Kamiokande-I,-II, and-III. We set lower limits on the partial lifetime for each of these modes: τn→ν[over ¯]π0>1.1×10(33) years and τp→ν[over ¯]π+>3.9×10(32) years at a 90% confidence level.

13.
Phys Rev Lett ; 112(13): 131803, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24745406

ABSTRACT

A search for the dinucleon decay pp → K+ K+ has been performed using 91.6 kton·yr data from Super-Kamiokande-I. This decay provides a sensitive probe of the R-parity-violating parameter λ112''. A boosted decision tree analysis found no signal candidates in the data. The expected background was 0.28±0.19 atmospheric neutrino induced events and the estimated signal detection efficiency was 12.6%±3.2%. A lower limit of 1.7×10(32) years has been placed on the partial lifetime of the decay O16 → C14K+ K+ at 90% C.L. A corresponding upper limit of 7.8×10(-9) has been placed on the parameter λ112''.

14.
Phys Rev Lett ; 112(2): 025001, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24484020

ABSTRACT

We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43 GV/m to a strongly loaded value of 26 GV/m.

15.
Phys Rev Lett ; 110(18): 181802, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683190

ABSTRACT

Super-Kamiokande atmospheric neutrino data were fit with an unbinned maximum likelihood method to search for the appearance of tau leptons resulting from the interactions of oscillation-generated tau neutrinos in the detector. Relative to the expectation of unity, the tau normalization is found to be 1.42 ± 0.35(stat)(-0.12)(+0.14)(syst) excluding the no-tau-appearance hypothesis, for which the normalization would be zero, at the 3.8σ level. We estimate that 180.1 ± 44.3(stat)(-15.2)(+17.8) (syst) tau leptons were produced in the 22.5 kton fiducial volume of the detector by tau neutrinos during the 2806 day running period. In future analyses, this large sample of selected tau events will allow the study of charged current tau neutrino interaction physics with oscillation produced tau neutrinos.

16.
Phys Rev Lett ; 107(24): 241801, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22242990

ABSTRACT

We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3) eV2, 1.0) and is consistent with the overall Super-K measurement.

17.
Phys Rev Lett ; 102(14): 141801, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19392425

ABSTRACT

We have searched for proton decays via p-->e;{+}pi;{0} and p-->micro;{+}pi;{0} using data from a 91.7 kt.yr exposure of Super-Kamiokande-I and a 49.2 kt.yr exposure of Super-Kamiokande-II. No candidate events were observed with expected backgrounds induced by atmospheric neutrinos of 0.3 events for each decay mode. From these results, we set lower limits on the partial lifetime of 8.2 x 10;{33} and 6.6 x 10;{33} years at 90% confidence level for p-->e;{+}pi;{0} and p-->micro;{+}pi;{0} modes, respectively.

18.
J Obstet Gynaecol ; 28(7): 688-91, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19065361

ABSTRACT

Recent evidence implicates the immune system and the clotting mechanisms in the pathophysiology of sickle cell disease (SCD). This study investigates the association of steady state platelet count with the severity of SCD in pregnancy. A total of 40 SCD women who were asymptomatic early in pregnancy were studied retrospectively: 14 remained asymptomatic throughout pregnancy and 26 developed at least one SCD-related complication. The early pregnancy platelet count was compared between the two groups using t-test and its ability to predict SCD-related complications in pregnancy was investigated using Receiver-Operator Characteristics (ROC) curve. Compared with asymptomatic patients, women who developed SCD-related complications had significantly higher early-pregnancy platelet count [328x10(9)/l (95% CI: 268-389) vs 210x10(9)/l (146-275), p < 0.01]. The area under the ROC curve was 76.4% (95% CI 59.7-93.2). These indicate that the platelet count in early pregnancy is significantly higher in SCD patients who subsequently develop SCD-related complications and may be used for screening.


Subject(s)
Anemia, Sickle Cell/blood , Platelet Count , Pregnancy Complications, Hematologic/blood , Adult , Anemia, Sickle Cell/complications , Female , Humans , Pregnancy , ROC Curve , Retrospective Studies
19.
Phys Rev Lett ; 97(17): 171801, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17155460

ABSTRACT

A search for the appearance of tau neutrinos from nu(mu) <--> nu(tau) oscillations in the atmospheric neutrinos has been performed using 1489.2 days of atmospheric neutrino data from the Super-Kamiokande-I experiment. A best fit tau neutrino appearance signal of 138+/-48(stat)-32(+15)(syst) events is obtained with an expectation of 78+/-26(syst). The hypothesis of no tau neutrino appearance is disfavored by 2.4 sigma.

20.
In Vivo ; 19(4): 797-800, 2005.
Article in English | MEDLINE | ID: mdl-15999552

ABSTRACT

BACKGROUND: The serum CA 125 marker is elevated in 80% of patients with ovarian adenocarcinoma. MDR 1 gene expression has been identified in a variety of tumor types and its expression has been correlated with multidrug resistance. Whether there is a correlation between CA 125 levels and MDR 1 expression has not been sufficiently investigated. Therefore, the aim of this study was to examine whether an association between serum CA 125 levels and MDR 1 expression exists. PATIENTS AND METHODS: Serum CA 125 levels were measured during the diagnosis of ovarian cancer. Fresh tumor specimens or ascitic fluid samples were studied for MDR 1 expression by the polymerase chain reaction method (PCR). RESULTS: Forty patients with ovarian cancer were studied, 34 (85%) of whom had elevated CA 125. Twenty-eight out of the 40 patients were tested for MDR 1 expression; 20 expressed the gene and 8 did not. The median level of CA 125 in specimens expressing the MDR1 gene was 327, and in specimens that did not it was 376. There was no correlation between the CA 125 levels and MDR 1 expression (p = 0.484). CONCLUSION: There does not seem to be an association between CA 125 levels and expression of the MDR1 gene in patients with ovarian cancer.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenocarcinoma/metabolism , CA-125 Antigen/blood , Ovarian Neoplasms/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Staging , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...