Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 235: 111947, 2022 10.
Article in English | MEDLINE | ID: mdl-35933833

ABSTRACT

Quercetin is one of the most bioactive and common dietary flavonoids, with a significant repertoire of biological and pharmacological properties. The biological activity of quercetin, however, is influenced by its limited solubility and bioavailability. Driven by the need to enhance quercetin bioavailability and bioactivity through metal ion complexation, synthetic efforts led to a unique ternary Ce(III)-quercetin-(1,10-phenanthroline) (1) compound. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetric analysis (TGA), UV-Visible, NMR, Electron Spray Ionization-Mass Spectrometry (ESI-MS), Fluorescence, X-rays) revealed its solid-state and solution properties, with significant information emanating from the coordination sphere composition of Ce(III). The experimental data justified further entry of 1 in biological studies involving toxicity, (Reactive Oxygen Species, ROS)-suppressing potential, cell metabolism inhibition in Saccharomyces cerevisiae (S. cerevisiae) cultures, and plasmid DNA degradation. DFT calculations revealed its electronic structure profile, with in silico studies showing binding to DNA, DNA gyrase, and glutathione S-transferase, thus providing useful complementary insight into the elucidation of the mechanism of action of 1 at the molecular level and interpretation of its bio-activity. The collective work projects the importance of physicochemically supported bio-activity profile of well-defined Ce(III)-flavonoid compounds, thereby justifying focused pursuit of new hybrid metal-organic materials, effectively enhancing the role of naturally-occurring flavonoids in physiology and disease.


Subject(s)
Antioxidants , Quercetin , Anti-Inflammatory Agents , Antioxidants/pharmacology , DNA , Phenanthrolines , Quercetin/chemistry , Quercetin/pharmacology , Saccharomyces cerevisiae , Spectroscopy, Fourier Transform Infrared
2.
J Inorg Biochem ; 194: 180-199, 2019 05.
Article in English | MEDLINE | ID: mdl-30875656

ABSTRACT

The quest for effective treatments of oxidative stress has concentrated over the years on new nanomaterials with improved antioxidant and antiradical activity, thereby attracting broad research interest. In that regard, research efforts in our lab were launched to pursue such hybrid materials involving a) synthesis of silica gel matrices, b) evaluation of the suitability of atoxic matrices as potential carriers for the controlled release of V(IV)(VOSO4), V(V)(NaVO3) compounds and a newly synthesized heterometallic lithium-vanadium(IV,V) tetranuclear compound containing vanadium-bound hydroxycarboxylic 1,3-diamine-2-propanol-N,N,N',N'-tetraacetic acid (DPOT), and c) investigation of structural and textural properties of silica nanoparticles (NPs) by different and complementary characterization techniques, inquiring into the nature of the encapsulated vanadium species and their interaction with the siloxane matrix, collectively targeting novel antioxidant and antiradical nanomaterials biotechnology. The physicochemical characterization of the vanadium-loaded SiO2 NPs led to the formulation of optimized material configuration linked to the delivery of the encapsulated antioxidant-antiradical load. Entrapment and drug release studies showed a) the competence of hybrid nanoparticles with respect to encapsulation efficiency of the vanadium compound (concentration dependence), b) congruence with the physicochemical features determined, and c) a well-defined release profile of NP load. Antioxidant properties and the free radical scavenging capacity of the new hybrid materials (containing VOSO4, NaVO3, and V-DPOT) were demonstrated through a) 2-diphenyl-1-picrylhydrazyl (DPPH) free radical, and b) intracellular-extracellular reactive oxygen species (ROS) assays, through UV-Visible spectroscopy techniques, collectively showing that the hybrid silica NPs (empty-loaded) could serve as an efficient platform for nanodrug formulations counteracting oxidative stress.


Subject(s)
Coordination Complexes/pharmacology , Free Radical Scavengers/pharmacology , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Bacillus subtilis/drug effects , Coordination Complexes/chemistry , Drug Liberation , Escherichia coli/drug effects , Free Radical Scavengers/chemistry , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vanadium/chemistry
3.
J Inorg Biochem ; 191: 94-111, 2019 02.
Article in English | MEDLINE | ID: mdl-30476714

ABSTRACT

Curcumin is a natural product with a broad spectrum of beneficial properties relating to pharmaceutical applications, extending from traditional remedies to modern cosmetics. The biological activity of such pigments, however, is limited by their solubility and bioavailability, thereby necessitating new ways of achieving optimal tissue cellular response and efficacy as drugs. Metal ion complexation provides a significant route toward improvement of curcumin stability and biological activity, with vanadium being a representative such metal ion, amply encountered in biological systems and exhibiting exogenous bioactivity through potential pharmaceuticals. Driven by the need to optimally increase curcumin bioavailability and bioactivity through complexation, synthetic efforts were launched to seek out stable species, ultimately leading to the synthesis and isolation of a new ternary V(IV)-curcumin-(2,2'-bipyridine) complex. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetry (TGA), UV-Visible, NMR, ESI-MS, Fluorescence, X-rays) portrayed the solid-state and solution properties of the ternary complex. Pulsed-EPR spectroscopy, in frozen solutions, suggested the presence of two species, cis- and trans-conformers. Density Functional Theory (DFT) calculations revealed the salient features and energetics of the two conformers, thereby complementing EPR spectroscopy. The well-described profile of the vanadium species led to its in vitro biological investigation involving toxicity, cell metabolism inhibition in S. cerevisiae cultures, Reactive Oxygen Species (ROS)-suppressing capacity, lipid peroxidation, and plasmid DNA degradation. A multitude of bio-assays and methodologies, in comparison to free curcumin, showed that it exhibits its antioxidant potential in a concentration-dependent fashion, thereby formulating a bioreactivity profile supporting development of new efficient vanado-pharmaceuticals, targeting (extra)intra-cellular processes under (patho)physiological conditions.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Antioxidants/chemical synthesis , Crystallography, X-Ray , Curcumin/chemical synthesis , In Vitro Techniques , Reactive Oxygen Species/metabolism , Spectrum Analysis/methods
4.
J Inorg Biochem ; 151: 150-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26198972

ABSTRACT

In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology.


Subject(s)
Anti-Infective Agents/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Zinc/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Chemistry, Organic , Crystallography, X-Ray , Gels/chemistry , Ligands , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Molecular Structure , Polymethyl Methacrylate/chemistry , Schiff Bases/chemistry , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...