Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 262(2): 268-81, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14550790

ABSTRACT

The experimental manipulation of early embryologic events, resulting in the misexpression of the homeobox transcription factor pitx2, is associated with subsequent defects of laterality in a number of vertebrate systems. To clarify the role of one pitx2 isoform, pitx2c, in determining the left-right axis of amphibian embryos, we examined the heart and gut morphology of Xenopus laevis embryos after attenuating pitx2c mRNA levels using chemically modified antisense oligonucleotides. We demonstrate that the partial depletion of pitx2c mRNA in these embryos results in alteration of both cardiac morphology and intestinal coiling. The most common cardiac abnormality seen was a failure of rightward migration of the outflow tract, while the most common intestinal laterality phenotype seen was a full reversal in the direction of coiling, each present in 23% of embryos injected with the pitx2c antisense oligonucleotide. An abnormality in either the heart or gut further predisposed to a malformation in the other. In addition, a number of other cardiac anomalies were observed after pitx2c mRNA attenuation, including abnormalities of atrial septation, extracellular matrix restriction, relative atrial-ventricular chamber positioning, and restriction of ventricular development. Many of these findings correlate with cardiac defects previously reported in pitx2 null and hypomorphic mice, but can now be assigned specifically to attenuation of the pitx2c isoform in Xenopus.


Subject(s)
Embryo, Nonmammalian/metabolism , Heart Defects, Congenital/genetics , Homeodomain Proteins/metabolism , Intestines/abnormalities , Xenopus Proteins , Animals , Heart Defects, Congenital/pathology , Intestines/pathology , Microscopy, Confocal , Xenopus laevis
2.
Am J Physiol Lung Cell Mol Physiol ; 284(2): L395-401, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12388336

ABSTRACT

The large capillary mass of the newborn lung demands the presence of endothelial cell precursors in lung tissue before development of the pulmonary capillary bed. The objective of this investigation was to isolate and characterize putative endothelial cell precursors from developing human lung. CD34, a cell surface marker for hematopoietic progenitor cells, endothelial precursor cells, and small vessel endothelial cells, was employed as an immunological "handle" for the selection of the desired cells. When CD34+ cells were isolated from midtrimester human fetal lung tissue, then maintained in culture, the isolated cells expressed immunoreactivity for the endothelial cell marker von Willebrand factor and the vascular endothelial growth factor receptors KDR and Flt-1. However, only 5% or fewer of the cells expressed PECAM, an important factor in cell-cell interactions and a marker for endothelial cells associated with vessels. The CD34+ cells endocytosed acetylated low-density lipoprotein and formed capillary-like structures when incubated in a cushion of Matrigel. RT-PCR analysis of mRNA for endothelial cell-related proteins Flt-1, Tie-2, and endothelial nitric oxide synthase demonstrated expression of these mRNAs by the isolated cells for at least 16 cell passages. These observations demonstrate that capillary endothelial cell precursors can be isolated from developing human lung and maintained in cell culture. These cells represent a potentially important tool for investigating the regulation of mechanisms governing development of the air-blood barrier in the human lung.


Subject(s)
Antigens, CD34/metabolism , Fetus/physiology , Lung/embryology , Cell Separation , Female , Fetus/cytology , Flow Cytometry , Humans , Immunologic Techniques , Pregnancy , Pregnancy Trimester, Second
SELECTION OF CITATIONS
SEARCH DETAIL
...