Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(7): e0306580, 2024.
Article in English | MEDLINE | ID: mdl-38968184

ABSTRACT

Monitoring trends in wildlife communities is integral to making informed land management decisions and applying conservation strategies. Birds inhabit most niches in every environment and because of this they are widely accepted as an indicator species for environmental health. Traditionally, point counts are the common method to survey bird populations, however, passive acoustic monitoring approaches using autonomous recording units have been shown to be cost-effective alternatives to point count surveys. Advancements in automatic acoustic classification technologies, such as BirdNET, can aid in these efforts by quickly processing large volumes of acoustic recordings to identify bird species. While the utility of BirdNET has been demonstrated in several applications, there is little understanding of its effectiveness in surveying declining grassland birds. We conducted a study to evaluate the performance of BirdNET to survey grassland bird communities in Nebraska by comparing this automated approach to point count surveys. We deployed ten autonomous recording units from March through September 2022: five recorders in row-crop fields and five recorders in perennial grassland fields. During this study period, we visited each site three times to conduct point count surveys. We compared focal grassland bird species richness between point count surveys and the autonomous recording units at two different temporal scales and at six different confidence thresholds. Total species richness (focal and non-focal) for both methods was also compared at five different confidence thresholds using species accumulation curves. The results from this study demonstrate the usefulness of BirdNET at estimating long-term grassland bird species richness at default confidence scores, however, obtaining accurate abundance estimates for uncommon bird species may require validation with traditional methods.


Subject(s)
Acoustics , Birds , Grassland , Animals , Nebraska , Birds/physiology , Conservation of Natural Resources/methods , Biodiversity
2.
PLoS One ; 18(8): e0288449, 2023.
Article in English | MEDLINE | ID: mdl-37651350

ABSTRACT

In the Southern Appalachian region of the United States, harvest data has indicated the occurrence of low deer densities while exposing a trend of declining white-tailed deer (Odocoileus virginianus) populations over the past several decades in northern Georgia. A triumvirate of increasing fawn predator populations reside in the Southern Appalachian Mountains including coyotes (Canis latrans), black bears (Ursus americanus) and bobcats (Lynx rufus). This region is also characterized by a homogenous landscape composed of mature forests and sparse understory vegetation, likely lacking adequate cover to offer fawns refugia from predators. Our objectives were to estimate survival and cause-specific mortality rates of fawns while assessing a possible link between mortality risk, intrinsic fawn characteristics (i.e., birth mass, Julian birth date, sibling status), and landscape features within fawn usage areas. During 2018-2020, we radio-collared 71 fawns within the Chattahoochee National Forest of northern Georgia, USA and monitored survival to 12 weeks of age. We observed low fawn survival (cumulative = 0.157, 95% CI = 0.091-0.273; vaginal implant transmitter = 0.196, 95% CI = 0.096-0.403) with predation as the leading cause of all known mortalities (45 of 55 mortalities; 82%) due primarily to coyotes (n = 22), black bears (n = 12), and bobcats (n = 7). Relationships between landscape features and fawn predation risk were minimal with only one informative covariate. Increasing amounts of early successional land cover within fawn usage areas decreased fawn mortality risk within the first 20 days of life, but elevated mortality risk thereafter. All fawns with any amount of early successional land cover in their usage areas died of predation (n = 13) at various time intervals, suggesting limited areas of potential fawning cover may be targeted by predators. However, fawn predation risk seemed to be high regardless of landscape covariates due to the limited number of surviving fawns. Coyote-caused mortality occurred over a longer period at a consistently higher magnitude than all other forms of mortality, indicating possible delayed prey-switching behavior and coyote predation as an important factor of fawn survival. The low recruitment of fawns influenced by high predation rates and homogenous habitat conditions is likely the cause of deer population declines in the region.


Subject(s)
Coyotes , Deer , Grasshoppers , Lynx , Ursidae , Animals , Female , Predatory Behavior , Appalachian Region
SELECTION OF CITATIONS
SEARCH DETAIL
...