Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 19(10): 1062-1067, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32424369

ABSTRACT

Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such 'Ising-nematic' systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe1/3NbS2. The crucial difference is that the nematic order on the triangular lattice is a [Formula: see text] or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.

2.
Phys Rev Lett ; 121(2): 027001, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30085755

ABSTRACT

We present the strain and temperature dependence of an anomalous nematic phase in optimally doped BaFe_{2}(As,P)_{2}. Polarized ultrafast optical measurements reveal broken fourfold rotational symmetry in a temperature range above T_{c} in which bulk probes do not detect a phase transition. Using ultrafast microscopy, we find that the magnitude and sign of this nematicity vary on a 50-100 µm length scale, and the temperature at which it onsets ranges from 40 K near a domain boundary to 60 K deep within a domain. Scanning Laue microdiffraction maps of local strain at room temperature indicate that the nematic order appears most strongly in regions of weak, isotropic strain. These results indicate that nematic order arises in a genuine phase transition rather than by enhancement of local anisotropy by a strong nematic susceptibility. We interpret our results in the context of a proposed surface nematic phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...