Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(26): e2308950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441226

ABSTRACT

Monoclonal antibody (mAb) discovery plays a prominent role in diagnostic and therapeutic applications. Droplet microfluidics has become a standard technology for high-throughput screening of antibody-producing cells due to high droplet single-cell confinement frequency and rapid analysis and sorting of the cells of interest with their secreted mAbs. In this work, a new method is described for on-demand co-encapsulation of cells that eliminates the difficulties associated with washing in between consecutive steps inside the droplets and enables the washing and addition of fresh media. The new platform identifies hybridoma cells that are expressing antibodies of interest using antibody-characterization assays to find the best-performing or rare-cell antibody candidates.


Subject(s)
Antibodies, Monoclonal , Microfluidics , Antibodies, Monoclonal/chemistry , Microfluidics/methods , Animals , Hybridomas/cytology , Single-Cell Analysis/methods , Mice , Humans , Automation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
2.
Biosens Bioelectron ; 222: 114998, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36549107

ABSTRACT

We present a novel "on-off", cost-effective, rapid electrochemical aptasensor combined with a microfluidics cartridge system for the detection of Δ9-THC (Δ9-tetrahydrocannabinol) in human saliva via differential pulse voltammetry. The assay relied on the competitive binding between the Δ9-THC and a soluble redox indicator methylene blue, using an aptamer selected via FRELEX. We found that the aptasensor can detected 1 nM of Δ9-THC in PBS in a three-electrode cell system, while the sensitivity and both the dissociation constant (Kd) and association constant (Kb) were dependent on the aptamer density. The aptamer also showed great affinity towards Δ9-THC when tested against cannabinol and cannabidiol. The same limit of detection of 1 nM in PBS was achieved in small volume samples (∼60 µL) using the aptamer-modified gold screen-printed electrodes combined with the microfluidic cartridge setup, however, the presence of 10% raw human saliva had a negative effect which manifested in a 10-fold increase in the LOD due to interfering elements. Filtering the saliva, improved the tested volume to 50% and the LOD to 5 nM of Δ9-THC which is lower than the concentrations associated with impairment (6.5-32 nM). The aptasensor showed a good storage capability up to 3 days, however, the reusability significantly dropped from 10 cycles (freshly prepared) to 5 cycles. The results clearly demonstrate the feasibility of the aptasensor platform with the microfluidics chamber towards a point-of-care testing application for the detection of Δ9-THC in saliva.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Humans , Microfluidics , Dronabinol , Electrochemical Techniques/methods , Biosensing Techniques/methods , Saliva , Electrodes , Gold , Limit of Detection
3.
Anal Chem ; 94(9): 4039-4047, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35192339

ABSTRACT

Viral-based systems are a popular delivery method for introducing exogenous genetic material into mammalian cells. Unfortunately, the preparation of lentiviruses containing the machinery to edit the cells is labor-intensive, with steps requiring optimization and sensitive handling. To mitigate these challenges, we introduce the first microfluidic method that integrates lentiviral generation, packaging, and transduction. The new method allows the production of viral titers between 106 and 107 (similar to macroscale production) and high transduction efficiency for hard-to-transfect cell lines. We extend the technique for gene editing applications and show how this technique can be used to knock out and knock down estrogen receptor gene─a gene prominently responsible for 70% of breast cancer cases. This new technique is automated with multiplexing capabilities, which have the potential to standardize the methods for viral-based genome engineering.


Subject(s)
Genetic Vectors , Microfluidics , Animals , Cell Line , Lentivirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...