Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Obes Facts ; 17(2): 145-157, 2024.
Article in English | MEDLINE | ID: mdl-38224679

ABSTRACT

INTRODUCTION: Longitudinal effect of diet-induced obesity on bone is uncertain. Prior work showed both no effect and a decrement in bone density or quality when obesity begins prior to skeletal maturity. We aimed to quantify long-term effects of obesity on bone and bone marrow adipose tissue (BMAT) in adulthood. METHODS: Skeletally mature, female C57BL/6 mice (n = 70) aged 12 weeks were randomly allocated to low-fat diet (LFD; 10% kcal fat; n = 30) or high-fat diet (HFD; 60% kcal fat; n = 30), with analyses at 12, 15, 18, and 24 weeks (n = 10/group). Tibial microarchitecture was analyzed by µCT, and volumetric BMAT was quantified via 9.4T MRI/advanced image analysis. Histomorphometry of adipocytes and osteoclasts, and qPCR were performed. RESULTS: Body weight and visceral white adipose tissue accumulated in response to HFD started in adulthood. Trabecular bone parameters declined with advancing experimental age. BV/TV declined 22% in LFD (p = 0.0001) and 17% in HFD (p = 0.0022) by 24 weeks. HFD failed to appreciably alter BV/TV and had negligible impact on other microarchitecture parameters. Both dietary intervention and age accounted for variance in BMAT, with regional differences: distal femoral BMAT was more responsive to diet, while proximal femoral BMAT was more attenuated by age. BMAT increased 60% in the distal metaphysis in HFD at 18 and 24 weeks (p = 0.0011). BMAT in the proximal femoral diaphysis, unchanged by diet, decreased 45% due to age (p = 0.0002). Marrow adipocyte size via histomorphometry supported MRI quantification. Osteoclast number did not differ between groups. Tibial qPCR showed attenuation of some adipose, metabolism, and bone genes. A regulator of fatty acid ß-oxidation, cytochrome C (CYCS), was 500% more abundant in HFD bone (p < 0.0001; diet effect). CYCS also increased due to age, but to a lesser extent. HFD mildly increased OCN, TRAP, and SOST. CONCLUSIONS: Long-term high fat feeding after skeletal maturity, despite upregulation of visceral adiposity, body weight, and BMAT, failed to attenuate bone microarchitecture. In adulthood, we found aging to be a more potent regulator of microarchitecture than diet-induced obesity.


Subject(s)
Adiposity , Osteoporosis , Mice , Animals , Female , Bone Marrow/metabolism , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Body Weight , Osteoporosis/metabolism , Diet, High-Fat/adverse effects
2.
PLoS One ; 18(10): e0288212, 2023.
Article in English | MEDLINE | ID: mdl-37824509

ABSTRACT

A reliable, widely available method to detect osteoporosis prior to fracture is needed. Serum levels of C-reactive protein may independently predict low bone mineral density (BMD) and high fracture risk. Existing empirical data focus on sexually and/or racially homogenous populations. This study tests the hypotheses that: C-reactive protein (1) negatively correlates with BMD and (2) fracture history, and (3) independently predicts BMD and fracture history in a diverse population. NHANES 2017-2020 pre-pandemic cycle data were analyzed in R studio. Strength and direction of relationships (-1 to +1) between variables were determined using Kendall's rank correlation coefficient (τ). Linear models were optimized to predict femoral neck or lumbar spine BMD. C-reactive protein positively correlated with femoral (τ = 0.09, p<0.0001) and spine BMD (τ = 0.10, p<0.0001). Individuals identifying as female demonstrated more robust, but still weak, correlations between C-reactive protein and femoral neck (τ = 0.15, p<0.0001; male, τ = 0.06, p = 0.051) and spine BMD (τ = 0.16, p<0.0001; male, τ = 0.06, p = 0.04). C-reactive protein positively correlated with fracture history (τ = 0.083, p = 0.0009). C-reactive protein significantly predicted femoral neck (R2 = 0.022, p = 0.0001) and spine BMD (R2 = 0.028, p<0.0001) and fracture history (R2 = 0.015, p<0.0001). Exploratory analyses identified weight was the single best predictor for femoral neck (R2 = 0.24, p<0.0001) and spine BMD (R2 = 0.21, p<0.0001). In sum, C-reactive protein statistically correlates with and predicts femoral neck and spine BMD, but the magnitude is too low to be biologically meaningful. While weight is a more robust predictor, individuals who are overweight or obese account for nearly half of all osteoporotic fractures, limiting the predictive power of this variable at identifying individuals at risk for osteoporosis. Identification of a robust predictor of fracture risk in a diverse population and across of range of body weights and compositions is needed.


Subject(s)
Bone Density , Osteoporosis , Male , Humans , Female , C-Reactive Protein , Absorptiometry, Photon , Nutrition Surveys , Osteoporosis/diagnosis , Femur Neck/diagnostic imaging , Lumbar Vertebrae
3.
Med Sci Sports Exerc ; 55(10): 1812-1822, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37202869

ABSTRACT

PURPOSE: Obesity is thought to negatively impact bone quality and strength despite improving bone mineral density. We hypothesized that 1) continuous consumption of a high-fat, high-sugar (HFS) diet would impair bone quality and strength, and 2) a change from an HFS diet to a low-fat, low-sugar (LFS) would reverse HFS-induced impairments to bone quality and strength. METHODS: Six-week-old male C57Bl/6 mice ( n = 10/group) with access to a running wheel were randomized to an LFS diet or an HFS diet with simulated sugar-sweetened beverages (20% fructose in place of regular drinking water) for 13 wk. HFS mice were subsequently randomized to continuing HFS feeding (HFS/HFS) or transition to the LFS diet (HFS/LFS) for four additional weeks. RESULTS: HFS/HFS mice exhibited superior femoral cancellous microarchitecture (i.e., greater BV/TV, Tb.N, Tb.Th, and decreased Tb.Sp) and cortical bone geometry (i.e., lower Ct.CSA and pMOI) compared with all other groups. At the femoral mid-diaphysis, structural, but not material, mechanical properties were greatest in HFS/HFS mice. However, HFS/HFS exhibited greater femoral neck strength only when compared with mice assigned to diet transition (HFS/LFS). Osteoclast surface and the percentage of osteocytes staining positive for interferon-gamma were greater in HFS/LFS mice, consistent with reduced cancellous microarchitecture postdiet transition. CONCLUSIONS: HFS feeding enhanced bone anabolism and structural, but not material, mechanical properties in exercising mice. A change from an HFS to LFS diet returned the bone structure to that of continuously LFS-fed mice while compromising strength. Our results indicate rapid weight loss from obese states should be performed with caution to prevent bone fragility. A deeper analysis into the altered bone phenotype in diet-induced obesity from a metabolic standpoint is needed.


Subject(s)
Bone Density , Fructose , Animals , Male , Mice , Bone and Bones/metabolism , Diet, Fat-Restricted , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Obesity/metabolism
4.
Front Endocrinol (Lausanne) ; 14: 1168552, 2023.
Article in English | MEDLINE | ID: mdl-37251680

ABSTRACT

The skeletal and immune systems are intricately intertwined within the bone marrow microenvironment, a field of study termed osteoimmunology. Osteoimmune interactions are key players in bone homeostasis and remodeling. Despite the critical role of the immune system in bone health, virtually all animal research in osteoimmunology, and more broadly bone biology, relies on organisms with naïve immune systems. Drawing on insights from osteoimmunology, evolutionary anthropology, and immunology, this perspective proposes the use of a novel translational model: the dirty mouse. Dirty mice, characterized by diverse exposures to commensal and pathogenic microbes, have mature immune systems comparable to adult humans, while the naïve immune system of specific-pathogen free mice is akin to a neonate. Investigation into the dirty mouse model will likely yield important insights in our understanding of bone diseases and disorders. A high benefit of this model is expected for diseases known to have a connection between overactivation of the immune system and negative bone outcomes, including aging and osteoporosis, rheumatoid arthritis, HIV/AIDS, obesity and diabetes, bone marrow metastases, and bone cancers.


Subject(s)
Arthritis, Rheumatoid , Bone Neoplasms , Osteoporosis , Humans , Mice , Animals , Bone and Bones , Immune System , Tumor Microenvironment
5.
Med Sci Sports Exerc ; 54(9): 1437-1447, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35969165

ABSTRACT

PURPOSE: Chronic overfeeding via a high-fat/high-sugar (HFHS) diet decreases wheel running and substantially alters the gut metabolome of C57BL/6J mice. In this study, we tested the hypothesis that fecal microbial transplants can modulate the effect of diet on wheel running. METHODS: Singly housed, 6-wk-old male C57BL/6J mice were fed either a grain-based diet (CHOW) or HFHS diet and provided a running wheel for 13 wk. Low-active, HFHS-exposed mice were then either switched to a CHOW diet and given an oral fecal microbial transplant from mice fed the CHOW diet, switched to a CHOW diet and given a sham transplant, or remained on the HFHS diet and given a fecal microbial transplant from mice fed the CHOW diet. Total wheel running, nutrient intake, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis were measured at various times throughout the study. RESULTS: We found that an HFHS diet decreases wheel running activity, increases body fat, and decreases microbial alpha diversity compared with a CHOW diet. Improvements in wheel running, body composition, and microbial alpha diversity were accomplished within 2 wk for mice switched from an HFHS diet to a CHOW diet with no clear evidence of an added benefit from fecal transplants. A fecal transplant from mice fed a CHOW diet without altering diet did not improve wheel running or body composition. Wheel running, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis percentage were primarily determined by diet. CONCLUSIONS: Our results suggest that diet is a primary mediator of wheel running with no clear effect from fecal microbial transplants.


Subject(s)
Diet, High-Fat , Fatty Liver , Animals , Fecal Microbiota Transplantation , Male , Mice , Mice, Inbred C57BL , Motor Activity
6.
Front Endocrinol (Lausanne) ; 13: 879588, 2022.
Article in English | MEDLINE | ID: mdl-35498418

ABSTRACT

The first International Summer School on Bone Marrow Adiposity was organized by members of Bone Marrow Adiposity Society and held virtually on September 6-8 2021. The goal of this meeting was to bring together young scientists interested in learning about bone marrow adipose tissue biology and pathology. Fifty-two researchers from different backgrounds and fields, ranging from bone physiopathology to adipose tissue biology and hematology, participated in the summer school. The meeting featured three keynote lectures on the fundamentals of bone marrow adiposity, three scientific workshops on technical considerations in studying bone marrow adiposity, and six motivational and career development lectures, spanning from scientific writing to academic career progression. Moreover, twenty-one participants presented their work in the form of posters. In this report we highlight key moments and lessons learned from the event.


Subject(s)
Adiposity , Bone Marrow , Humans , Obesity , Schools , Seasons
7.
Semin Cell Dev Biol ; 123: 22-35, 2022 03.
Article in English | MEDLINE | ID: mdl-34489173

ABSTRACT

Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.


Subject(s)
Osteoarthritis , Osteoporosis , Adipocytes , Aged , Aging , Exercise , Humans , Osteoarthritis/therapy , Osteoblasts , Prospective Studies
8.
JBMR Plus ; 5(3): e10450, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33778320

ABSTRACT

Use of the selective estrogen receptor modulator Tamoxifen (TAM) is a mainstay to induce conditional expression of Cre recombinase in transgenic laboratory mice. To excise ß-catenin fl/fl in 28-day-old male and female Prrx1-CreER/ß-catenin fl/fl mice (C57BL/6), we utilized TAM at 150 mg/kg; despite ß-catenin knockout in MSC, we found a significant increase in trabecular and cortical bone volume in all genders. Because TAM was similarly anabolic in KO and control mice, we investigated a dose effect on bone formation by treating wild-type mice (WT C57BL/6, 4 weeks) with TAM (total dose 0, 20, 40, 200 mg/kg via four injections). TAM increased bone in a dose-dependent manner analyzed by micro-computed tomography (µCT), which showed that, compared to control, 20 mg/kg TAM increased femoral bone volume fraction (bone volume/total volume [BV/TV]) (21.6% ± 1.5% to 33% ± 2.5%; 153%, p < 0.005). With TAM 40 mg/kg and 200 mg/kg, BV/TV increased to 48.1% ± 4.4% (223%, p < 0.0005) and 58% ± 3.8% (269%, p < 0.0001) respectively, compared to control. Osteoblast markers increased with 200 mg/kg TAM: Dlx5 (224%, p < 0.0001), Alp (166%, p < 0.0001), Bglap (223%, p < 0.0001), and Sp7 (228%, p < 0.0001). Osteoclasts per bone surface (Oc#/BS) nearly doubled at the lowest TAM dose (20 mg/kg), but decreased to <20% control with 200 mg/kg TAM. Our data establish that use of TAM at even very low doses to excise a floxed target in postnatal mice has profound effects on trabecular and cortical bone formation. As such, TAM treatment is a major confounder in the interpretation of bone phenotypes in conditional gene knockout mouse models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

9.
J Appl Physiol (1985) ; 130(3): 627-639, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33411639

ABSTRACT

Chronic inflammation leads to bone loss and fragility. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) consistently promote bone resorption. Dietary modulation of proinflammatory cytokines is an accepted therapeutic approach to treat chronic inflammation, including that induced by space-relevant radiation exposure. As such, these studies were designed to determine whether an anti-inflammatory diet, high in omega-3 fatty acids, could reduce radiation-mediated bone damage via reductions in the levels of inflammatory cytokines in osteocytes and serum. Lgr5-EGFP C57BL/6 mice were randomized to receive diets containing fish oil and pectin (FOP; high in omega-3 fatty acids) or corn oil and cellulose (COC; high in omega-6 fatty acids) and then acutely exposed to 0.5-Gy 56Fe or 2.0-Gy gamma-radiation. Mice fed the FOP diet exhibited consistent reductions in serum TNF-α in the 56Fe experiment but not the gamma-experiment. The percentage osteocytes (%Ot) positive for TNF-α increased in gamma-exposed COC, but not FOP, mice. Minimal changes in %Ot positive for sclerostin were observed. FOP mice exhibited modest improvements in several measures of cancellous microarchitecture and volumetric bone mineral density (BMD) postexposure to 56Fe and gamma-radiation. Reduced serum TNF-α in FOP mice exposed to 56Fe was associated with either neutral or modestly positive changes in bone structural integrity. Collectively, these data are generally consistent with previous findings that dietary intake of omega-3 fatty acids may effectively mitigate systemic inflammation after acute radiation exposure and facilitate maintenance of BMD during spaceflight in humans.NEW & NOTEWORTHY This is the first investigation, to our knowledge, to test the impact of a diet high in omega-3 fatty acids on multiple bone structural and biological outcomes following space-relevant radiation exposure. Novel in biological outcomes is the assessment of osteocyte responses to this stressor. These data also add to the growing evidence that low-dose exposures to even high-energy ion species like 56Fe may have neutral or even small positive impacts on bone.


Subject(s)
Fatty Acids, Omega-3 , Animals , Mice , Mice, Inbred C57BL , Osteocytes , Radiation, Ionizing , Tumor Necrosis Factor-alpha
10.
Front Endocrinol (Lausanne) ; 12: 782194, 2021.
Article in English | MEDLINE | ID: mdl-35145475

ABSTRACT

Exercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a condition characterized by paucity of white adipose tissue, with eventual diabetes, and steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for lipid droplet formation. Male twelve-week-old B6 knockouts (KO) and wild type (WT) littermates were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8). KO weighed 14% less than WT (p=0.01) and exhibited an absence of epididymal adipose tissue; KO liver Plin1 via qPCR was 9-fold that of WT (p=0.04), consistent with steatosis. Bone marrow adipose tissue (BMAT), unlike white adipose, was measurable, although 40.5% lower in KO vs WT (p=0.0003) via 9.4T MRI/advanced image analysis. SEIPIN ablation's most notable effect marrow adiposity was in the proximal femoral diaphysis (-56% KO vs WT, p=0.005), with relative preservation in KO-distal-femur. Bone via µCT was preserved in SEIPIN KO, though some quality parameters were attenuated. Running distance, speed, and time were comparable in KO and WT. Exercise reduced weight (-24% WT-E vs WT p<0.001) but not in KO. Notably, exercise increased trabecular BV/TV in both (+31%, KO-E vs KO, p=0.004; +14%, WT-E vs WT, p=0.006). The presence and distribution of BMAT in SEIPIN KO, though lower than WT, is unexpected and points to a uniqueness of this depot. That trabecular bone increases were achievable in both KO and WT, despite a difference in BMAT quantity/distribution, points to potential metabolic flexibility during exercise-induced skeletal anabolism.


Subject(s)
Adipose Tissue/metabolism , Bone Marrow/metabolism , Cancellous Bone/metabolism , Femur/metabolism , GTP-Binding Protein gamma Subunits/genetics , Lipodystrophy/metabolism , Physical Conditioning, Animal , Adipose Tissue/diagnostic imaging , Adipose Tissue/pathology , Animals , Body Weight , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Cancellous Bone/diagnostic imaging , Diaphyses/diagnostic imaging , Disease Models, Animal , Epididymis/metabolism , Epididymis/pathology , Femur/diagnostic imaging , Lipodystrophy/diagnostic imaging , Lipodystrophy/genetics , Lipodystrophy/pathology , Male , Mice , Mice, Knockout , Organ Size , Perilipin-1/genetics , X-Ray Microtomography
11.
Curr Osteoporos Rep ; 18(6): 774-789, 2020 12.
Article in English | MEDLINE | ID: mdl-33068251

ABSTRACT

PURPOSE OF REVIEW: To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS: Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.


Subject(s)
Adipose Tissue/metabolism , Bone Marrow/metabolism , Bone and Bones/metabolism , Diet , Exercise/physiology , Adipocytes/metabolism , Animals , Bone Density/physiology , Energy Metabolism/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...