Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829851

ABSTRACT

Non-toxic alternatives to chemical soil fumigants for suppressing soilborne pathogens such as Fusarium oxysporum (Fo), one causative agent of strawberry black root rot complex prevalent in the southeastern U.S., are urgently needed. A promising alternative is anaerobic soil disinfestation (ASD), in which soil is amended with labile organic materials, irrigated to field capacity, and tarped to induce anaerobic fermentation for a brief period before planting. Pathogen-suppression mechanisms of ASD include anaerobic conditions and generation of reduced metal cations (Fe2+ and Mn2+) and volatile fatty acids (VFAs; e.g., acetic, n-butyric, isovaleric, and others). However, little is known about how the interaction between VFAs, reduced metals, soil texture, and liming influences suppression of Fo. We investigated Fo suppression by VFAs and reduced metal cations in both aqueous and soil-based incubation trials. Inoculum containing Fo chlamydospores was added to aqueous medium containing either 5 or 10 mmol/liter VFAs and either 0.01% or 0.05% (w/w) reduced metals. In soil-based incubations, chlamydospore-containing inoculum was applied to sandy, sandy loam, and silty clay soil saturated by solutions containing 10 or 20 mmol/liter VFAs with or without 0.05% (w/w) reduced metals. VFAs, particularly in combination with Fe2+ in aqueous solutions and Mn2+ in soils significantly reduced Fo viability. At the same time, liming and higher soil clay content reduced the effectiveness of VFAs and reduced metals for suppressing Fo, highlighting the influence of soil pH and soil texture on ASD effectiveness.

2.
Plant Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720536

ABSTRACT

Strawberry (Fragaria × ananassa Duch) in Tennessee is cultivated on plastic mulched beds annually, and production is limited primarily by multiple oomycete and fungal root rot pathogens that result in reduced vigor and black root rot disease symptoms. In early June 2018, plants (cv. Chandler) with reduced shoot vigor and size, and black, necrotic stunted roots were collected from Rhea County, TN. Roots and crowns of 10 plants were cut into 1-3 cm pieces and surface sterilized with 0.6% NaOCl, followed by 70% ethanol for 1 min each, and plated on water agar. White mycelia produced after 3 days were transferred to potato dextrose agar amended with 10 mg/liter rifampicin. After 10 days, fungal colonies were light purple on the surface and dark purple on the colony underside, later developing blue-black pigmentation on the underside. Microconidia on carnation leaf agar were ovoid to ellipsoid, aseptate or septate and 8.0 to 24.2 (13.7) × 3.0 to 4.5 (3.8) µm in size, macroconidia were 3 to 5 septate and falcate to almost straight and 33.7 to 52.8 (44.4) × 4.0 to 5.5 (4.9) µm in size (n=80); both conidia were produced on monophialides. Chlamydospores were globose and subglobose, formed terminally and intercalary on aerial, submerged, and surface mycelium, singly or in pairs and were abundantly produced in sucrose broth and on synthetic nutrient-poor agar (SNA) (diam. 7.6 µm). Morphology was consistent with Fusarium oxysporum (Leslie and Summerell, 2006) and F. cugenangense, a member of the F. oxysporum species complex, as described by Maryani et al. (2019). Fungal mycelia were used for PCR (Phire Plant Direct PCR Master Mix, Thermo Scientific, CA) and the translational elongation factor 1-α (EF1α) region was amplified with primers EF-1/EF-2 (O'Donnell et al., 1998), internal transcribed spacer (ITS) regions amplified with primers ITS1/ITS2 (White et al. 1990), and the RNA polymerase second largest subunit region (RPB2) with primer pairs 5f2/7cr and 7cf/11ar (O'Donnell et al., 2022). PCR products of isolate SC5 were sequenced, and sequences compared to all sequences in the FUSARIOID-ID database using polyphasic identification (Crous et al., 2021) with EF1α (GenBank Accession No. ON703236) and RPB2 (OR472390) sequences. The highest similarity (100%) was with isolates of F. cugenangense, including ex-type isolate InaCC F984 (99.94% similarity) (Maryani et al., 2019). F. cugenangense is closely related to F. callistephi and F. elaeidis, but both species lack chlamydospores, and F. elaeidis has polyphialides (Lombard et al, 2019). To satisfy Koch's postulates, healthy rooted strawberry plants produced in soilless media were transplanted into 4 plastic pots (1.2-liter) containing 5% (w/v) fungal inoculum (grown on barley grain) and mixed into the top 5-cm of peat-based soilless medium. Pots were incubated at 25°C and 50% RH in a growth chamber. Four pots without inoculum served as controls. The trial was repeated. Within 8 weeks, all inoculated plants had low vigor, with necrotic and stunted roots. Root sections of control and inoculated plants were plated, and the pathogen was re-isolated from diseased roots of all inoculated plants only and confirmed as F. cugenangense based on morphology and sequence analysis. To our knowledge, this is the first report of F. cugenangense, or any member of the F. oxysporum species complex, causing root rot of strawberry in Tennessee and could be an important component of the production-limiting black root rot disease complex of strawberry.

3.
Front Endocrinol (Lausanne) ; 12: 652628, 2021.
Article in English | MEDLINE | ID: mdl-34054727

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) whose activation results in suppression of food intake and improvement of glucose metabolism. Several receptor interacting proteins regulate the signaling of GLP-1R such as G protein-coupled receptor kinases (GRK) and ß-arrestins. Here we evaluated the physiological and pharmacological impact of GRK inhibition on GLP-1R activity leveraging small molecule inhibitors of GRK2 and GRK3. We demonstrated that inhibition of GRK: i) inhibited GLP-1-mediated ß-arrestin recruitment, ii) enhanced GLP-1-induced insulin secretion in isolated islets and iii) has additive effect with dipeptidyl peptidase 4 in mediating suppression of glucose excursion in mice. These findings highlight the importance of GRK to modulate GLP-1R function in vitro and in vivo. GRK inhibition is a potential therapeutic approach to enhance endogenous and pharmacologically stimulated GLP-1R signaling.


Subject(s)
G-Protein-Coupled Receptor Kinase 1/antagonists & inhibitors , Glucagon-Like Peptide 1/metabolism , Amides/chemistry , Animals , CHO Cells , Calcium/metabolism , Cricetulus , Diabetes Mellitus/metabolism , Dipeptidyl Peptidase 4/metabolism , Eating , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Islets of Langerhans/metabolism , Mice , Obesity/metabolism , Phosphorylation , Receptors, Glucagon/metabolism , Renal Insufficiency, Chronic/metabolism , Signal Transduction , beta-Arrestins/metabolism
4.
MAbs ; 12(1): 1794687, 2020.
Article in English | MEDLINE | ID: mdl-32744157

ABSTRACT

The long circulating half-life and inherently bivalent architecture of IgGs provide an ideal vehicle for presenting otherwise short-lived G-protein-coupled receptor agonists in a format that enables avidity-driven enhancement of potency. Here, we describe the site-specific conjugation of a dual agonist peptide (an oxyntomodulin variant engineered for potency and in vivo stability) to the complementarity-determining regions (CDRs) of an immunologically silent IgG4. A cysteine-containing heavy chain CDR3 variant was identified that provided clean conjugation to a bromoacetylated peptide without interference from any of the endogenous mAb cysteine residues. The resulting mAb-peptide homodimer has high potency at both target receptors (glucagon receptor, GCGR, and glucagon-like peptide 1 receptor, GLP-1R) driven by an increase in receptor avidity provided by the spatially defined presentation of the peptides. Interestingly, the avidity effects are different at the two target receptors. A single dose of the long-acting peptide conjugate robustly inhibited food intake and decreased body weight in insulin resistant diet-induced obese mice, in addition to ameliorating glucose intolerance. Inhibition of food intake and decrease in body weight was also seen in overweight cynomolgus monkeys. The weight loss resulting from dosing with the bivalently conjugated dual agonist was significantly greater than for the monomeric analog, clearly demonstrating translation of the measured in vitro avidity to in vivo pharmacology.


Subject(s)
Antibodies, Monoclonal , Eating/drug effects , Obesity , Oxyntomodulin , Peptides , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Cysteine/chemistry , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Obesity/blood , Obesity/drug therapy , Oxyntomodulin/chemistry , Oxyntomodulin/pharmacokinetics , Oxyntomodulin/pharmacology , Peptides/chemistry , Peptides/pharmacokinetics , Peptides/pharmacology
5.
Diabetes Obes Metab ; 22(12): 2437-2450, 2020 12.
Article in English | MEDLINE | ID: mdl-33463043

ABSTRACT

AIM: The aim of this study was to evaluate amino acids as glucagon receptor (GCGR)-specific biomarkers in rodents and cynomolgus monkeys in the presence of agonism of both glucagon-like peptide-1 receptor (GLP1R) and GCGR with a variety of dual agonist compounds. MATERIALS AND METHODS: Primary hepatocytes, rodents (normal, diet-induced obese and GLP1R knockout) and cynomolgus monkeys were treated with insulin (hepatocytes only), glucagon (hepatocytes and cynomolgus monkeys), the GLP1R agonist, dulaglutide, or a variety of dual agonists with varying GCGR potencies. RESULTS: A long-acting dual agonist, Compound 2, significantly decreased amino acids in both wild-type and GLP1R knockout mice in the absence of changes in food intake, body weight, glucose or insulin, and increased expression of hepatic amino acid transporters. Dulaglutide, or a variant of Compound 2 lacking GCGR agonism, had no effect on amino acids. A third variant with ~31-fold less GCGR potency than Compound 2 significantly decreased amino acids, albeit to a significantly lesser extent than Compound 2. Dulaglutide (with saline infusion) had no effect on amino acids, but an infusion of glucagon dose-dependently decreased amino acids on the background of GLP1R engagement (dulaglutide) in cynomolgus monkeys, as did Compound 2. CONCLUSIONS: These results show that amino acids are sensitive and translatable GCGR-specific biomarkers.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Receptors, Glucagon , Amino Acids , Animals , Biomarkers , Glucagon , Mice , Mice, Inbred C57BL , Receptors, Glucagon/genetics
6.
ACS Med Chem Lett ; 10(1): 16-21, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655940

ABSTRACT

GPR40 is a G-protein-coupled receptor which mediates fatty acid-induced glucose-stimulated insulin secretion from pancreatic beta cells and incretion release from enteroendocrine cells of the small intestine. GPR40 full agonists exhibit superior glucose lowering compared to partial agonists in preclinical species due to increased insulin and GLP-1 secretion, with the added benefit of promoting weight loss. In our search for potent GPR40 full agonists, we discovered a superagonist which displayed excellent in vitro potency and superior efficacy in the Gαs-mediated signaling pathway. Most synthetic GPR40 agonists have a carboxylic acid headgroup, which may cause idiosyncratic toxicities, including drug-induced-liver-injury (DILI). With a methyl group and a fluorine atom substituted at the α-C of the carboxylic acid group, 19 is not only highly efficacious in lowering glucose and body weight in rodent models but also has a low DILI risk due to its stable acylglucuronide metabolite.

7.
Sci Total Environ ; 382(2-3): 375-82, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17544059

ABSTRACT

Total mercury levels were measured in largemouth bass (Micropterus salmoides), "sunfish" (Lepomis spp.), and "catfish" (primarily Ameiurus spp. and Ictalurus punctatus) from 1971 to 2004 in the middle Savannah River (river km 191 to 302), which drains the coastal plain of the southeastern U.S. Total mercury concentrations were higher in largemouth bass (overall mean of 0.55 mg/kg from 1971 to 2004), a piscivorous (trophic level 4) species than in the other taxa (means of 0.22-0.26 mg/kg), but temporal trends were generally similar among taxa. Mercury levels were highest in 1971 but declined over the next 10 years due to the mitigation of point source industrial pollution. Mercury levels in fish began to increase in the 1980s as a likely consequence of mercury inputs from tributaries and associated wetlands where mercury concentrations were significantly elevated in water and fish. Mercury levels in Savannah River fish decreased sharply in 2001-2003 coincident with a severe drought in the Savannah River basin, but returned to previous levels in 2004 with the resumption of normal precipitation. Regression models showed that mercury levels in fish changed significantly over time and were affected by river discharge. Mercury levels in Savannah River fish were only slightly lower in 2004 (0.3 to 0.8 mg/kg) than in 1971 (0.4 to 1.0 mg/kg) despite temporal changes during the intervening years.


Subject(s)
Fishes/metabolism , Food Chain , Mercury/pharmacokinetics , Rivers/chemistry , Water Pollutants, Chemical/pharmacokinetics , Animals , Bass/metabolism , Catfishes/metabolism , Environmental Monitoring/methods , Fresh Water/chemistry , Mercury/analysis , Perciformes/metabolism , South Carolina , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...