Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 63(3): 293-308, 2019 03.
Article in English | MEDLINE | ID: mdl-30413871

ABSTRACT

Acute water shortages for large metropolitan regions are likely to become more frequent as climate changes impact historic precipitation levels and urban population grows. California and Los Angeles County have just experienced a severe four year drought followed by a year of high precipitation, and likely drought conditions again in Southern California. We show how the embedded preferences for distant sources, and their local manifestations, have created and/or exacerbated fluctuations in local water availability and suboptimal management. As a socio technical system, water management in the Los Angeles metropolitan region has created a kind of scarcity lock-in in years of low rainfall. We come to this through a decade of coupled research examining landscapes and water use, the development of the complex institutional water management infrastructure, hydrology and a systems network model. Such integrated research is a model for other regions to unpack and understand the actual water resources of a metropolitan region, how it is managed and potential ability to become more water self reliant if the institutions collaborate and manage the resource both parsimoniously, but also in an integrated and conjunctive manner. The Los Angeles County metropolitan region, we find, could transition to a nearly water self sufficient system.


Subject(s)
Water Resources , Water , Droughts , Humans , Los Angeles , Urban Population
2.
Tree Physiol ; 32(4): 373-88, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22447283

ABSTRACT

Establishing quantitative links between plant hydraulic properties and the response of transpiration to environmental factors such as atmospheric vapor pressure deficit (D) is essential for improving our ability to understand plant water relations across a wide range of species and environmental conditions. We studied stomatal responses to D in irrigated trees in the urban landscape of Los Angeles, California. We found a strong linear relationship between the sensitivity of tree-level transpiration estimated from sap flux (m(T); slope of the relationship between tree transpiration and ln D) and transpiration at D=1 kPa (E(Tref)) that was similar to previous surveys of stomatal behavior in natural environments. In addition, m(T) was significantly related to vulnerability to cavitation of branches (P(50)). While m(T) did not appear to differ between ring- and diffuse-porous species, the relationship between m(T) and P(50) was distinct by wood anatomy. Therefore, our study confirms systematic differences in water relations in ring- versus diffuse-porous species, but these differences appear to be more strongly related to the relationship between stomatal sensitivity to D and vulnerability to cavitation rather than to stomatal sensitivity per se.


Subject(s)
Climate , Plant Stomata/physiology , Plant Transpiration , Stress, Physiological , Trees/physiology , Water , Xylem/physiology , Los Angeles , Phloem , Vapor Pressure , Wood
3.
Ecol Appl ; 21(3): 661-77, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21639035

ABSTRACT

Despite its importance for urban planning, landscape management, and water management, there are very few in situ estimates of urban-forest transpiration. Because urban forests contain an unusual and diverse mix of species from many regions worldwide, we hypothesized that species composition would be a more important driver of spatial variability in urban-forest transpiration than meteorological variables in the Los Angeles (California, USA) region. We used constant-heat sap-flow sensors to monitor urban tree water use for 15 species at six locations throughout the Los Angeles metropolitan area. For many of these species no previous data on sap flux, water use, or water relations were available in the literature. To scale sap-flux measurements to whole trees we conducted a literature survey of radial trends in sap flux across multiple species and found consistent relationships for angiosperms vs. gymnosperms. We applied this relationship to our measurements and estimated whole-tree and plot-level transpiration at our sites. The results supported very large species differences in transpiration, with estimates ranging from 3.2 +/- 2.3 kg x tree(-1) x d(-1) in unirrigated Pinus canariensis (Canary Island pine) to 176.9 +/- 75.2 kg x tree(-1) x d(-1) in Platanus hybrida (London planetree) in the month of August. Other species with high daily transpiration rates included Ficus microcarpa (laurel fig), Gleditsia triacanthos (honeylocust), and Platanus racemosa (California sycamore). Despite irrigation and relatively large tree size, Brachychiton populneas (kurrajong), B. discolor (lacebark), Sequoia sempervirens (redwood), and Eucalyptus grandis (grand Eucalyptus) showed relatively low rates of transpiration, with values < 45 kg x tree(-1) x d(-1). When scaled to the plot level, transpiration rates were as high as 2 mm/d for sites that contained both species with high transpiration rates and high densities of planted trees. Because plot-level transpiration is highly dependent on tree density, we modeled transpiration as a function of both species and density to evaluate a likely range of values in irrigated urban forests. The results show that urban forests in irrigated, semi-arid regions can constitute a significant use of water, but water use can be mitigated by appropriate selection of site, management method, and species.


Subject(s)
Cities , Ecosystem , Plant Transpiration/physiology , Trees/physiology , Environmental Monitoring , Los Angeles , Water/metabolism
4.
Plant Cell Environ ; 34(8): 1384-400, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21486308

ABSTRACT

Trees planted in urban landscapes in southern California are often exposed to an unusual combination of high atmospheric evaporative demand and moist soil conditions caused by irrigation. The water relations of species transplanted into these conditions are uncertain. We investigated the water relations of coast redwood (Sequoia sempervirens) planted in the urbanized semi-arid Los Angeles Basin, where it often experiences leaf chlorosis and senescence. We measured the sap flux (J(O)) and hydraulic properties of irrigated trees at three sites in the Los Angeles region. We observed relatively strong stomatal regulation in response to atmospheric vapour pressure deficit (D; J(O) saturated at D < 1 kPa), and a linear response of J(O) to photosynthetically active radiation. Total tree water use by coast redwood was relatively low, with plot-level transpiration rates below 1 mm d(-1) . There was some evidence of xylem cavitation during the summer, which appeared to be reversed in fall and early winter. We conclude that water stress was not a direct factor in causing leaf chlorosis and senescence as has been proposed. Instead, the relatively strong stomatal control that is adaptive in the native habitat of coast redwood may lead to carbon limitation and other stresses in semi-arid, irrigated habitats.


Subject(s)
Plant Transpiration/physiology , Sequoia/physiology , Agricultural Irrigation , Biological Transport , Biophysical Phenomena , California , Chlorophyll , Climate , Ecosystem , Los Angeles , Photosynthesis , Plant Leaves/physiology , Plant Stomata/physiology , Soil , Water , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...