Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 598(13): 2791-2811, 2020 07.
Article in English | MEDLINE | ID: mdl-32378188

ABSTRACT

KEY POINTS: Compared with sham rats, rats a week after acute lung injury (ALI) express more pro-inflammatory cytokines in their brainstem respiratory control nuclei, exhibit a higher respiratory frequency (fR) and breathe with a more predictable pattern. These characteristics of the respiratory pattern persist in in situ preparations even after minimizing pulmonary and chemo-afferent inputs. Interleukin (IL)-1ß microinjected in the nucleus tractus solitarii increases fR and the predictability of the ventilatory pattern similar to rats with ALI. Intracerebroventricular infusion of indomethacin, an anti-inflammatory drug, mitigates the effect of ALI on fR and ventilatory pattern variability. We conclude that changes in the ventilatory pattern after ALI result not only from sensory input due to pulmonary damage and dysfunction but also from neuro-inflammation. ABSTRACT: Acute lung injury (ALI) increases respiratory rate (fR) and ventilatory pattern variability (VPV), but also evokes peripheral and central inflammation. We hypothesized that central inflammation has a role in determining the ventilatory pattern after ALI. In rat pups, we intratracheally injected either bleomycin to induce ALI or saline as a sham control. One week later, we recorded the ventilatory pattern of the rat pups using flow-through plethysmography, then formed in situ preparations from these pups and recorded their 'fictive' patterns from respiratory motor nerves. Compared with the ventilatory pattern of the sham rat pups, injured rat pups had increased fR and predictability. Surprisingly, the fictive patterns of the in situ preparations from ALI pups retained these characteristics despite removing their lungs to eliminate pulmonary sensory inputs and perfusing them with hyperoxic artificial cerebral spinal fluid to minimize peripheral chemoreceptor input. Histological processing revealed increased immunoreactivity of the pro-inflammatory cytokine Interleukin-1ß (IL-1ß) in the nucleus tractus solitarii (nTS) from ALI but not sham rats. In subsequent experiments, we microinjected IL-1ß in the nTS bilaterally in anaesthetized naïve adult rats, which increased fR and predictability of ventilatory pattern variability (VPV) after 2 h. Finally, we infused indomethacin intracerebroventricularly during the week of survival after ALI. This did not affect sham rats, but mitigated changes in fR and VPV in ALI rats. We conclude that neuro-inflammation has an essential role in determining the ventilatory pattern of ALI rats.


Subject(s)
Acute Lung Injury , Rodentia , Acute Lung Injury/chemically induced , Animals , Brain Stem , Inflammation , Lung , Rats , Rats, Sprague-Dawley
2.
Brain Behav Immun ; 87: 610-633, 2020 07.
Article in English | MEDLINE | ID: mdl-32097765

ABSTRACT

The pathways for peripheral-to-central immune communication (P â†’ C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1ß) in the area postrema, a sensory circumventricular organ that connects P â†’ C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1ß and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P â†’ C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1ß and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1ß and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1ß + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P â†’ C I-comm via radial-glia of the FS.


Subject(s)
Area Postrema , Lung Injury , Animals , Bleomycin/toxicity , Communication , Neuroglia , Rats , Rats, Sprague-Dawley
3.
Brain Behav Immun ; 70: 398-422, 2018 05.
Article in English | MEDLINE | ID: mdl-29601943

ABSTRACT

Transition periods (TPs) are brief stages in CNS development where neural circuits can exhibit heightened vulnerability to pathologic conditions such as injury or infection. This susceptibility is due in part to specialized mechanisms of synaptic plasticity, which may become activated by inflammatory mediators released under pathologic conditions. Thus, we hypothesized that the immune response to lung injury (LI) mediated synaptic changes through plasticity-like mechanisms that depended on whether LI occurred just before or after a TP. We studied the impact of LI on brainstem 2nd-order viscerosensory neurons located in the nucleus tractus solitarii (nTS) during a TP for respiratory control spanning (postnatal day (P) 11-15). We injured the lungs of Sprague-Dawley rats by intratracheal instillation of Bleomycin (or saline) just before (P9-11) or after (P17-19) the TP. A week later, we prepared horizontal slices of the medulla and recorded spontaneous and evoked excitatory postsynaptic currents (sEPSCs/eEPSCs) in vitro from neurons in the nTS that received monosynaptic glutamatergic input from the tractus solitarii (TS). In rats injured before the TP (pre-TP), neurons exhibited blunted sEPSCs and TS-eEPSCs compared to controls. The decreased TS-eEPSCs were mediated by differences in postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptors (AMPAR). Specifically, compared to controls, LI rats had more Ca2+-impermeable AMPARs (CI-AMPARs) as indicated by: 1) the absence of current-rectification, 2) decreased sensitivity to polyamine, 1-Naphthyl-acetyl-spermine-trihydrochloride (NASPM) and 3) augmented immunoreactive staining for the CI-AMPAR GluA2. Thus, pre-TP-LI acts postsynaptically to blunt glutamatergic transmission. The neuroimmune response to pre-TP-LI included microglia hyper-ramification throughout the nTS. Daily intraperitoneal administration of minocycline, an inhibitor of microglial/macrophage function prevented hyper-ramification and abolished the pre-TP-LI evoked synaptic changes. In contrast, rat-pups injured after the TP (post-TP) exhibited microglia hypo-ramification in the nTS and had increased sEPSC amplitudes/frequencies, and decreased TS-eEPSC amplitudes compared to controls. These synaptic changes were not associated with changes in CI-AMPARs, and instead involved greater TS-evoked use-dependent depression (reduced paired pulse ratio), which is a hallmark of presynaptic plasticity. Thus we conclude that LI regulates the efficacy of TS → nTS synapses through discrete plasticity-like mechanisms that are immune-mediated and depend on whether the injury occurs before or after the TP for respiratory control.


Subject(s)
Lung Injury/immunology , Lung Injury/metabolism , Age Factors , Animals , Animals, Newborn , Bleomycin/pharmacology , Depression , Depressive Disorder , Excitatory Amino Acid Agents , Excitatory Postsynaptic Potentials , Female , Glutamic Acid/physiology , Lung Injury/physiopathology , Male , Medulla Oblongata , Neuronal Plasticity , Neurons , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Solitary Nucleus/physiology , Synapses/physiology , Synaptic Transmission/physiology
4.
Neurosci Lett ; 505(2): 93-7, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-22001576

ABSTRACT

Leptin signaling in the hypothalamus is obligatory for normal food intake and body weight homeostasis. It is now well established that besides the signal transducer and activator of transcription-3 (STAT3) pathway, several non-STAT3 pathways mediate leptin signaling in the hypothalamus. We have previously demonstrated that leptin stimulates phosphodiesterase-3B (PDE3B) activity in the hypothalamus, and PDE3 inhibitor cilostamide reverses anorectic and bodyweight reducing effects of leptin. Recently, we have demonstrated that cilostamide reversed the leptin-induced increase in proopiomelanocortin (POMC) gene expression in the hypothalamus. Because POMC and neuropeptide Y (NPY) neurons are thought to be the major targets of leptin signaling in the hypothalamus, to establish the physiological role of the PDE3B pathway it is important to demonstrate if PDE3B is expressed in these neurons. To this end we examined co-localization of PDE3B with POMC and NPY neurons using immunocytochemistry in POMC-GFP and NPY-GFP mice, respectively. Results showed that PDE3B was highly localized throughout the various hypothalamic sites including the arcuate nucleus (ARC), ventromedial nucleus, dorsomedial nucleus, ventral premammillary nucleus, paraventricular nucleus, and lateral hypothalamus. Importantly, almost all NPY (91.7%) and POMC (97.7%) neurons co-expressed PDE3B. These results suggest a direct role of the PDE3B pathway in mediating leptin signaling in the POMC and NPY neurons-a potential mechanism of leptin signaling in the hypothalamus.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/biosynthesis , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Hypothalamus/enzymology , Neurons/enzymology , Neuropeptide Y/biosynthesis , Pro-Opiomelanocortin/biosynthesis , Animals , Cyclic Nucleotide Phosphodiesterases, Type 3/physiology , Gene Expression Regulation/genetics , Hypothalamus/metabolism , Leptin/genetics , Leptin/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/enzymology , Neurons/metabolism , Neuropeptide Y/genetics , Pro-Opiomelanocortin/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...