Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Genet ; 68(10): 705-712, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37316650

ABSTRACT

Due to the geographical proximity of the northern coast of the Sea of Okhotsk and Kamchatka Peninsula to the Beringia, the indigenous populations of these territories are of great interest for elucidating the human settlement history of northern Asia and America. Meanwhile, there is a clear shortage of genetic studies of the indigenous populations of the northern coast of the Sea of Okhotsk. Here, in order to examine their fine-scale matrilineal genetic structure, ancestry and relationships with neighboring populations, we analyzed 203 complete mitogenomes (174 of which are new) from population samples of the Koryaks and Evens of the northern coast of the Sea of Okhotsk and the Chukchi of the extreme northeast Asia. The patterns observed underscore the reduced level of genetic diversity found in the Koryak, Even, and Chukchi populations, which, along with the high degree of interpopulation differentiation, may be the result of genetic drift. Our phylogeographic analysis reveals common Paleo-Asiatic ancestry for 51.1% of the Koryaks and 17.8% of the Evens. About third of the mitogenomes found in the Koryaks and Evens might be considered as ethno-specific, as these are virtually absent elsewhere in North, Central and East Asia. Coalescence ages of most of these lineages coincide well with the emergence and development of the Tokarev and Old Koryak archaeological cultures associated with the formation of the Koryaks, as well as with the period of separation and split of the North Tungusic groups migrated northwards from the Lake Baikal or the Amur River area.


Subject(s)
DNA, Mitochondrial , Genomics , North Asian People , Humans , DNA, Mitochondrial/genetics , Genetic Variation/genetics , North Asian People/ethnology , North Asian People/genetics , Phylogeography , Indigenous Peoples/genetics
2.
Int J Legal Med ; 134(5): 1581-1590, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32504149

ABSTRACT

Mitochondrial genome (mtDNA) is a valuable resource in resolving various human forensic casework. The usage of variability of complete mtDNA genomes increases their discriminatory power to the maximum and enables ultimate resolution of distinct maternal lineages. However, their wider employment in forensic casework is nowadays limited by the lack of appropriate reference database. In order to fill in the gap in the reference data, which, considering Slavic-speaking populations, currently comprises only mitogenomes of East and West Slavs, we present mitogenome data for 226 Serbians, representatives of South Slavs from the Balkan Peninsula. We found 143 (sub)haplogroups among which West Eurasian ones were dominant. The percentage of unique haplotypes was 85%, and the random match probability was as low as 0.53%. We support previous findings on both high levels of genetic diversity in the Serbian population and patterns of genetic differentiation among this and ten studied European populations. However, our high-resolution data supported more pronounced genetic differentiation among Serbians and two Slavic populations (Russians and Poles) as well as expansion of the Serbian population after the Last Glacial Maximum and during the Migration period (fourth to ninth century A.D.), as inferred from the Bayesian skyline analysis. Phylogenetic analysis of haplotypes found in Serbians contributed towards the improvement of the worldwide mtDNA phylogeny, which is essential for the interpretation of the mtDNA casework.


Subject(s)
DNA, Mitochondrial/genetics , Databases, Genetic , Genetic Variation , Genetics, Population/methods , Genome, Mitochondrial , Haplotypes , White People/genetics , Bayes Theorem , Humans , Multidimensional Scaling Analysis , Phylogeny , Serbia/ethnology , White People/ethnology
3.
Mol Genet Genomics ; 294(6): 1547-1559, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31372716

ABSTRACT

Distinctive peculiarities of Armenians such as their millennia-long genetic isolation and strong national identity attract a keen interest while studying the demographic history of the West Asia. Here, to examine their fine-scale matrilineal genetic structure, ancestry and relationships with neighboring populations, we analyzed 536 complete mitogenomes (141 of which are novel) from 8 geographically different Armenian populations, covering the whole stretch of historical Armenia. The observed patterns highlight a remarkable degree of matrilineal genetic heterogeneity and weak population structuring of Armenians. Moreover, our phylogeographic analysis reveals common ancestries for some mtDNA lineages shared by West Asians, Transcaucasians, Europeans, Central Asians and Armenians. About third of the mtDNA subhaplogroups found in Armenian gene pool might be considered as Armenian-specific, as these are virtually absent elsewhere in Europe, West Asia and Transcaucasia. Coalescence ages of most of these lineages do not exceed 3.1 kya and coincide well with the population size growth started around 1.8-2.8 kya detectable only in the Bayesian Skyline Plots based on the Armenian-specific mtDNA haplotypes.


Subject(s)
Genome, Mitochondrial , Armenia , Asia, Central , Asia, Western , DNA, Mitochondrial/chemistry , Europe , Genetic Variation , Haplotypes , Humans , Phylogeny , Phylogeography
4.
Mol Genet Genomics ; 293(5): 1255-1263, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29948329

ABSTRACT

Complete mitochondrial genomics is an effective tool for studying the demographic history of human populations, but there is still a deficit of mitogenomic data in European populations. In this paper, we present results of study of variability of 80 complete mitochondrial genomes in two Hungarian populations from eastern part of Hungary (Szeged and Debrecen areas). The genetic diversity of Hungarian mitogenomes is remarkably high, reaching 99.9% in a combined sample. According to the analysis of molecular variance (AMOVA), European populations showed a low, but statistically significant level of between-population differentiation (Fst = 0.61%, p = 0), and two Hungarian populations demonstrate lack of between-population differences. Phylogeographic analysis allowed us to identify 71 different mtDNA sub-clades in Hungarians, sixteen of which are novel. Analysis of ancestry-informative mtDNA sub-clades revealed a complex genetic structure associated with the genetic impact of populations from different parts of Eurasia, though the contribution from European populations is the most pronounced. At least 8% of ancestry-informative haplotypes found in Hungarians demonstrate similarity with East and West Slavic populations (sub-clades H1c23a, H2a1c1, J2b1a6, T2b25a1, U4a2e, K1c1j, and I1a1c), while the influence of Siberian populations is not so noticeable (sub-clades A12a, C4a1a, and probably U4b1a4).


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity/genetics , Genetic Variation , Genetics, Population , Genome, Mitochondrial , Haplotypes , Humans , Hungary , Phylogeography
5.
Forensic Sci Int Genet ; 30: 51-56, 2017 09.
Article in English | MEDLINE | ID: mdl-28633069

ABSTRACT

Complete mtDNA genome sequencing improves molecular resolution for distinguishing variation between individuals and populations, but there is still deficiency of mitogenomic population data. To overcome this limitation, we used Sanger-based protocol to generate complete mtDNA sequences of 376 Russian individuals from six populations of European part of Russia and 100 Polish individuals from northern Poland. Nearly complete resolution of mtDNA haplotypes was achieved - about 97% of haplotypes were unique both in Russians and Poles, and no haplotypes overlapped between them when indels were considered. While European populations showed a low, but statistically significant level of between-population differentiation (Fst=0.66%, p=0), Russians demonstrate lack of between-population differences (Fst=0.22%, p=0.15). Results of the Bayesian skyline analysis of Russian mitogenomes demonstrate not only post-Last Glacial Maximum expansion, but also rapid population growth starting from about 4.3kya (95% CI: 2.9-5.8kya), i.e. in the Bronze Age. This expansion strongly correlates with the Kurgan model established by archaeologists and confirmed by paleogeneticists.


Subject(s)
DNA, Mitochondrial/genetics , Genetics, Population , Genome, Human , Haplotypes , Humans , Poland , Polymorphism, Genetic , Russia , Sequence Analysis, DNA
6.
Ann Hum Biol ; 44(5): 408-418, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28140657

ABSTRACT

BACKGROUND: Available mitochondrial (mtDNA) data demonstrate genetic differentiation among South Slavs inhabiting the Balkan Peninsula. However, their resolution is insufficient to elucidate the female-specific aspects of the genetic history of South Slavs, including the genetic impact of various migrations which were rather common within the Balkans, a region having a turbulent demographic history. AIM: The aim was to thoroughly study complete mitogenomes of Serbians, a population linking westward and eastward South Slavs. SUBJECTS AND METHODS: Forty-six predominantly Serbian super-haplogroup U complete mitogenomes were analysed phylogenetically against ∼4000 available complete mtDNAs of modern and ancient Western Eurasians. RESULTS: Serbians share a number of U mtDNA lineages with Southern, Eastern-Central and North-Western Europeans. Putative Balkan-specific lineages (e.g. U1a1c2, U4c1b1, U5b3j, K1a4l and K1a13a1) and lineages shared among Serbians (South Slavs) and West and East Slavs were detected (e.g. U2e1b1, U2e2a1d, U4a2a, U4a2c, U4a2g1, U4d2b and U5b1a1). CONCLUSION: The exceptional diversity of maternal lineages found in Serbians may be associated with the genetic impact of both autochthonous pre-Slavic Balkan populations whose mtDNA gene pool was affected by migrations of various populations over time (e.g. Bronze Age pastoralists) and Slavic and Germanic newcomers in the early Middle Ages.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Genome, Mitochondrial , Haplotypes/genetics , Humans , Serbia
7.
Am J Phys Anthropol ; 156(3): 449-65, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25418795

ABSTRACT

Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k).


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation/genetics , Anthropology, Physical , Genetics, Population , Haplotypes/genetics , Humans , Phylogeography , Principal Component Analysis , Serbia
8.
BMC Evol Biol ; 14: 217, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25301575

ABSTRACT

BACKGROUND: Although the genetic heritage of aboriginal Siberians is mostly of eastern Asian ancestry, a substantial western Eurasian component is observed in the majority of northern Asian populations. Traces of at least two migrations into southern Siberia, one from eastern Europe and the other from western Asia/the Caucasus have been detected previously in mitochondrial gene pools of modern Siberians. RESULTS: We report here 166 new complete mitochondrial DNA (mtDNA) sequences that allow us to expand and re-analyze the available data sets of western Eurasian lineages found in northern Asian populations, define the phylogenetic status of Siberian-specific subclades and search for links between mtDNA haplotypes/subclades and events of human migrations. From a survey of 158 western Eurasian mtDNA genomes found in Siberia we estimate that nearly 40% of them most likely have western Asian and another 29% European ancestry. It is striking that 65 of northern Asian mitogenomes, i.e. ~41%, fall into 19 branches and subclades which can be considered as Siberian-specific being found so far only in Siberian populations. From the coalescence analysis it is evident that the sequence divergence of Siberian-specific subclades was relatively small, corresponding to only 0.6-9.5 kya (using the complete mtDNA rate) and 1-6 kya (coding region rate). CONCLUSIONS: The phylogeographic analysis implies that the western Eurasian founders, giving rise to Siberian specific subclades, may trace their ancestry only to the early and mid-Holocene, though some of genetic lineages may trace their ancestry back to the end of Last Glacial Maximum (LGM). We have not found the modern northern Asians to have western Eurasian genetic components of sufficient antiquity to indicate traces of pre-LGM expansions.


Subject(s)
DNA, Mitochondrial/genetics , Gene Pool , Genetics, Population , Asian People/genetics , Female , Genetics, Medical , Humans , Molecular Sequence Data , Phylogeny , Phylogeography , Siberia , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...