Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38668145

ABSTRACT

The reaction of glycerol with CO2 to produce glycerol carbonate was performed successfully in the presence of gold nanoparticles (AuNPs) supported by a metal-organic framework (MOF) constructed from mixed carboxylate (terephthalic acid and 1,3,5-benzenetricarboxylic acid). The most efficient were two AuNPs@MOF catalysts prepared from pre-synthesized MOF impregnated with Au3+ salt and subsequently reduced to AuNPs using H2 (catalyst 4%Au(H2)@MOF1) or reduced with NaBH4 (catalyst 4%Au@PEI-MOF1). Compared to existing catalysts, AuNPs@MOFs require simple preparation and operate under mild and sustainable conditions, i.e., a much lower temperature and the lowest CO2 overpressure ever reported, with MgCO3 having been found to be the optimal dehydrating agent. Although the yield of the process is still not competitive with previously developed systems, the most promising advantage is the highest TOF (78 h-1) ever reported for this reaction. The optimal parameters observed for AuNPs were also tested on AgNPs and CuNPs with promising results, suggesting their great potential for industrial application. The catalysts were characterized by XRD, TEM, SEM-EDS, ICP-MS, XPS, and porosity measurements, confirming that AuNPs are present in low concentration, uniformly distributed, and confined to the cavities of the MOF.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38671874

ABSTRACT

Bilirubin (BR), a product of heme catabolism, plays a critical role in biological systems. Although increased levels of BR result in hyperbilirubinemia or jaundice, there is increasing evidence that lower concentrations substantially decrease the risk of oxidative stress-mediated diseases due to antioxidant functions of BR. We studied the radical-trapping ability of BR in two model systems, micellar and liposomal, at a broad pH range. At pH < 6.0, BR behaves as a retardant; however, at pH ≥ 6.0, BR becomes strong radical trapping antioxidant, with rate constants for reaction with lipidperoxyl radicals (kinh) within the range from 1.2 × 104 M-1 s-1 to 3.5 × 104 M-1 s-1, and in liposomal system, the activity of BR is comparable to α-tocopherol. This transition is likely facilitated by the ionization of carboxyl groups, leading to a conformational shift in BR and improved solubility/localization at the water/lipid interface. This is the first experimental evidence of the role of pH on the antioxidant activity of bilirubin, and the observed pH-dependent radical-trapping ability of BR holds practical significance, particularly in jaundice treatment where light therapy targets the skin's weakly acidic surface. Minor adjustments toward neutral or alkaline pH can enhance radical-trapping action of BR, thereby mitigating oxidative stress induced with blue or violet light exposure.

3.
Cancers (Basel) ; 15(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067318

ABSTRACT

Mitochondria, the main cellular power stations, are important modulators of redox-sensitive signaling pathways that may determine cell survival and cell death decisions. As mitochondrial function is essential for tumorigenesis and cancer progression, mitochondrial targeting has been proposed as an attractive anticancer strategy. In the present study, three mitochondria-targeted quercetin derivatives (mitQ3, 5, and 7) were synthesized and tested against six breast cancer cell lines with different mutation and receptor status, namely ER-positive MCF-7, HER2-positive SK-BR-3, and four triple-negative (TNBC) cells, i.e., MDA-MB-231, MDA-MB-468, BT-20, and Hs 578T cells. In general, the mito-quercetin response was modulated by the mutation status. In contrast to unmodified quercetin, 1 µM mitQ7 induced apoptosis in breast cancer cells. In MCF-7 cells, mitQ7-mediated apoptosis was potentiated under glucose-depleted conditions and was accompanied by elevated mitochondrial superoxide production, while AMPK activation-based energetic stress was associated with the alkalization of intracellular milieu and increased levels of NSUN4. Mito-quercetin also eliminated doxorubicin-induced senescent breast cancer cells, which was accompanied by the depolarization of mitochondrial transmembrane potential. Limited glucose availability also sensitized doxorubicin-induced senescent breast cancer cells to apoptosis. In conclusion, we show an increased cytotoxicity of mitochondria-targeted quercetin derivatives compared to unmodified quercetin against breast cancer cells with different mutation status that can be potentiated by modulating glucose availability.

4.
J Org Chem ; 87(22): 15530-15538, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36321638

ABSTRACT

The reaction of the 2,2'-diphenyl-1-picrylhydrazyl radical (dpph•) with resveratrol in methanol (kMeOH = 192 M-1 s-1) is greatly accelerated in the presence of stable nitroxyl radical TEMPO• (kmixMeOH = 1.4 × 103 M-1 s-1). This synergistic effect is surprising because TEMPO• alone reacts with dpph• relatively slowly (kS = 31 M-1 s-1 in methanol and 0.03 M-1 s-1 in nonpolar ethyl acetate). We propose a putative mechanism in which a mutual activation occurs within the acid-base pair TEMPO•/RSV to the resveratrol (RSV) anion and TEMPOH•+ radical cation, both being extremely fast scavengers of the dpph• radical. The fast initial reaction is followed by a much slower but continuous decay of dpph• because a nitroxyl radical is recovered from the TEMPOnium cation, which is reduced directly by RSV/RSV- to TEMPO• or recovered indirectly via a reaction with methanol, producing TEMPOH subsequently oxidized by dpph• to TEMPO•.


Subject(s)
Free Radical Scavengers , Methanol , Resveratrol , Biphenyl Compounds , Picrates
5.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36142851

ABSTRACT

Ionizing radiation (IR) can pass through the human body easily, potentially causing severe damage to all biocomponents, which is associated with increasing oxidative stress. IR is employed in radiotherapy; however, in order to increase safety, it is necessary to minimize side effects through the use of radioprotectors. Water-soluble derivatives of fullerene exhibit antiradical and antioxidant properties, and these compounds are regarded as potential candidates for radioprotectors. We examined the ability of fullerenol C60(OH)36 to protect human erythrocytes, including the protection of the erythrocytal antioxidant system against high-energy electrons. Human erythrocytes irradiated with high-energy [6 MeV] electrons were treated with C60(OH)36 (150 µg/mL), incubated and haemolyzed. The radioprotective properties of fullerenol were determined by examining the antioxidant enzymes activity in the hemolysate, the concentration of -SH groups, as well as by determining erythrocyte microviscosity. The irradiation of erythrocytes (650 and 1300 Gy) reduces the number of thiol groups; however, an attenuation of this harmful effect is observed (p < 0.05) in the presence of C60(OH)36. Although no significant effect of fullerenol was recorded on catalase activity, which was preserved in both control and test samples, a more active protection of other enzymes was evident. An irradiation-induced decrease in the activity of glutathione peroxidase and glutathione reductase became an increase in the activity of those two enzymes in samples irradiated in the presence of C60(OH)36 (p < 0.05 and p < 0.05, respectively). The fourth studied enzyme, glutathione transferase, decreased (p < 0.05) its activity in the irradiated hemolysate treated with C60(OH)36, thus, indicating a lower level of ROS in the system. However, the interaction of fullerenol with the active centre of the enzyme cannot be excluded. We also noticed that radiation caused a dose-dependent decrease in the erythrocyte microviscosity, and the presence of C60(OH)36 reduced this effect (p < 0.05). Overall, we point to the radioprotective effect of C60(OH)36 manifested as the protection of the antioxidant enzymes of human erythrocytes against IR-induced damage, which has not been the subject of intense research so far.


Subject(s)
Fullerenes , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/pharmacology , Electrons , Erythrocytes/metabolism , Fullerenes/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Reductase , Glutathione Transferase , Humans , Oxidative Stress , Reactive Oxygen Species/pharmacology , Sulfhydryl Compounds/pharmacology , Water/pharmacology
6.
Eur J Med Chem ; 238: 114481, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35665690

ABSTRACT

Metallofullerenols (MFs) are functionalized endohedral fullerenes connecting at least three levels of organization of matter: atomic, molecular, and supramolecular, resulting in their unique activity at the nanoscale. Biomedical applications of MFs started from gadolinium-containing contrasting agents, but today their potential medical applications go far beyond diagnostics and magnetic resonance imaging. In many cases, preclinical studies have shown a great therapeutic value of MFs, and here we provide an overview of interactions of MFs with high-energy radiation and with reactive oxygen species generated during radiation as a ground for potential applications in modern therapy of cancer patients. We also present the current knowledge on interactions of MFs with proteins and with other components of cells and tissues. Due to their antioxidant properties, as well as their ability to regulate the expression of genes involved in apoptosis, angiogenesis, and stimulation of the immune response, MFs can contribute to inhibition of tumor growth and protection of normal cells. MFs with enclosed gadolinium act as inhibitors of tumor growth in targeted therapy along with imaging techniques, but we hope that the data gathered in this review will help to accelerate further progress in the implementation of MFs, also the ones containing rare earth metals other than gadolinium, in a broad range of bioapplications covering not only diagnostics and bioimaging but also radiation therapy and cancer treatment by not-cytotoxic agents.


Subject(s)
Fullerenes , Neoplasms , Contrast Media/therapeutic use , Fullerenes/pharmacology , Fullerenes/therapeutic use , Gadolinium/therapeutic use , Humans , Magnetic Resonance Imaging/methods , Neoplasms/drug therapy
7.
RSC Adv ; 12(13): 8131-8136, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35424731

ABSTRACT

The reaction of a 2,2-diphenyl-1-picrylhydrazyl radical (dpph˙) with phenols carried out in alcohols is a frequently used assay for estimation of the antiradical activity of phenolic compounds. The rates of reactions of dpph˙ with five phenols (ArOH: unsubstituted phenol, 4-hydroxyacetophenone, two calix[4]resorcinarenes and baicalein) measured in methanol indicate the different kinetics of the process for very diluted phenols compared to their non-diluted solutions. This effect was explained as dependent on the ratio [ArO-]/[ArOH] and for diluted ArOH corresponds to an increased contribution of much faster electron transfer (ET, ArO-/dpph˙) over the Hydrogen Atom Transfer (HAT, ArOH/dpph˙). Simplified analysis of the reaction kinetics resulted in estimation of k ET/k HAT ratios for each studied ArOH, and in calculation of the rate constants k ET. Described results are cautionary examples of how the concentration of a phenol might change the reaction mechanism and the overall kinetics of the observed process.

8.
Cancers (Basel) ; 14(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35158873

ABSTRACT

Drug-induced senescence program may be activated both in normal and cancer cells as a consequence of chemotherapeutic treatment, leading to some adverse side effects such as senescence-associated secretory phenotype (SASP), secondary senescence, and cancer promotion. Targeted elimination of senescent cells can be achieved by drugs with senolytic activity (senolytics), for example, the plant-derived natural compound quercetin, especially when co-treated with kinase inhibitor dasatinib. In the present study, three quercetin derivatives were synthesized and tested for improved senolytic action against etoposide-induced senescent human normal mammary epithelial cells and triple-negative breast cancer cells in vitro. Transformation of catechol moiety into diphenylmethylene ketal and addition of three acetyl groups to the quercetin molecule (QD3 derivative) promoted the clearance of senescent cancer cells as judged by increased apoptosis compared to etoposide-treated cells. A QD3-mediated senolytic effect was accompanied by decreased SA-beta galactosidase activity and the levels of p27, IL-1ß, IL-8, and HSP70 in cancer cells. Similar effects were not observed in senescent normal cells. In conclusion, a novel senolytic agent QD3 was described as acting against etoposide-induced senescent breast cancer cells in vitro. Thus, a new one-two punch anti-cancer strategy based on combined action of a pro-senescence anti-cancer drug and a senolytic agent is proposed.

9.
J Org Chem ; 87(3): 1698-1709, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34842421

ABSTRACT

Experimental and theoretical studies indicate that resveratrol (RSV, dietary polyphenol that effectively reduces cellular oxidative stress) is a good scavenger of hydroxyl, alkoxyl, and peroxyl radicals in homogeneous systems. However, the role of RSV as a chain-breaking antioxidant is still questioned. Here, we describe pH dependent effectiveness of RSV as an inhibitor of peroxidation of methyl linoleate in Triton X-100 micelles and in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, with the best effectiveness at pH 6 (stoichiometric factors, n, are 4.9 and 5.6, and the rate constants for reaction with peroxyl radicals, kinh, are 1200 and 3300 M-1 s-1 in micellar and liposomal systems, respectively). We propose the mechanism in which RSV-derived radicals are coupled to dimers with recovered ability to trap lipidperoxyl radicals. The formation of such dimers is facilitated due to increased local concentration of RSV at the lipid-water interface. Good synergy of RSV with α-tocopherol analogue in micelles and liposomes is in contrast to the previously reported lack of synergy in non-polar solvents; however, the increased persistency of tocopheroxyl radicals in dispersed lipid/water systems and proximal localization of both antioxidants greatly facilitate the possible recovery of α-TOH by RSV.


Subject(s)
Antioxidants , Liposomes , Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Free Radicals , Hydrogen-Ion Concentration , Lipid Peroxidation , Micelles , Resveratrol/pharmacology
10.
J Org Chem ; 87(3): 1791-1804, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34871499

ABSTRACT

Catecholamines play a crucial role in signal transduction and are also expected to act as endogeneous antioxidants, but the mechanism of their antioxidant action is not fully understood. Here, we describe the impact of pH on the kinetics of reaction of four catecholamines (L-DOPA, dopamine, adrenaline, and noradrenaline) with model 2,2-diphenyl-1-picrylhydrazyl radical (dpph•) in methanol/water. The increase in pH from 5.5 to 7.4 is followed by a 2 order of magnitude increase in the rate constant, e.g., for dopamine (DA) kpH5.5 = 1,200 M-1 s-1 versus kpH7.4 = 170,000 M-1 s-1, and such rate acceleration is attributed to a fast electron transfer from the DA anion to dpph•. We also proved that at pH 7.0 DA breaks the peroxidation chain of methyl linoleate in liposomes assembled from neutral and negatively charged phospholipids. In contrast to no inhibitory effect during peroxidation in non-ionic emulsions, in bilayers one molecule of DA traps approximately four peroxyl radicals, with a rate constant kinh >103 M-1 s-1. Our results from a homogeneous system and bilayers prove that catecholamines act as effective, radical trapping antioxidants with activity depending on the ionization status of the catechol moiety, as well as microenvironment: organization of the lipid system (emulsions vs bilayers) and interactions of catecholamines with the biomembrane.


Subject(s)
Dopamine , Liposomes , Antioxidants/pharmacology , Dopamine/pharmacology , Epinephrine , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Levodopa , Lipid Peroxidation , Methanol , Norepinephrine , Water
11.
Angew Chem Int Ed Engl ; 60(28): 15220-15224, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33876878

ABSTRACT

Melanins are stable and non-toxic biomaterials with a great potential as chemopreventive agents for diseases connected with oxidative stress, but the mechanism of their antioxidant action is unclear. Herein, we show that polydopamine (PDA), a well-known synthetic melanin, becomes an excellent trap for alkylperoxyl radicals (ROO. , typically formed during autoxidation of lipid substrates) in the presence of hydroperoxyl radicals (HOO. ). The key reaction explaining this peculiar antioxidant activity is the reduction of the ortho-quinone moieties present in PDA by the reaction with HOO. . This reaction occurs via a H-atom transfer mechanism, as demonstrated by the large kinetic solvent effect of the reaction of a model quinone (3,5-di-tert-butyl-1,2-benzoquinone) with HOO. (k=1.5×107 and 1.1×105  M-1 s-1 in PhCl and MeCN). The chemistry disclosed herein is an important step to rationalize the redox-mediated bioactivity of melanins and of quinones.


Subject(s)
Antioxidants/chemistry , Hydrogen/chemistry , Indoles/chemistry , Peroxides/chemistry , Polymers/chemistry , Quinones/chemistry , Free Radicals/chemistry , Molecular Structure
12.
Food Chem ; 353: 129213, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33774519

ABSTRACT

Sulforaphane(SFN) and erucin(ERN) are isothiocyanates (ITCs) bearing, respectively, methylsulfinyl and methylsulfanyl groups. Their chemopreventive and anticancer activity is attributed to ability to modulate cellular redox status due to induction of Phase 2 cytoprotective enzymes (indirect antioxidant action) but many attempts to connect the bioactivity of ITCs with their radical trapping activity failed. Both ITCs are evolved from their glucosinolates during food processing of Cruciferous vegetables, therefore, we studied antioxidant behaviour of SFN/ERN at elevated temperature in two lipid systems. Neither ERN nor SFN inhibit the oxidation of bulk linolenic acid (below 100  °C) but both ITCs increase oxidative stability of soy lecithin (above 150 °C). On the basis of GC-MS analysis we verified our preliminary hypothesis (Antioxidants2020, 9, 1090) about participation of sulfenic acids and methylsulfinyl radicals as radical trapping agents responsible for the antioxidant effect of edible ITCs during thermal oxidation of lipids at elevated temperatures (above 140 °C).


Subject(s)
Antioxidants/chemistry , Isothiocyanates/chemistry , Succinates/chemistry , Sulfenic Acids/chemistry , Sulfides/chemistry , Sulfoxides/chemistry , Thiocyanates/chemistry , Brassicaceae/chemistry , Food Handling , Glucosinolates/chemistry , Oxidation-Reduction
13.
Int J Mol Sci ; 23(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35008545

ABSTRACT

Background: Fullerenols (water-soluble derivatives of fullerenes), such as C60(OH)36, are biocompatible molecules with a high ability to scavenge reactive oxygen species (ROS), but the mechanism of their antioxidant action and cooperation with endogenous redox machinery remains unrecognized. Fullerenols rapidly distribute through blood cells; therefore, we investigated the effect of C60(OH)36 on the antioxidant defense system in erythrocytes during their prolonged incubation. Methods: Human erythrocytes were treated with fullerenol at concentrations of 50-150 µg/mL, incubated for 3 and 48 h at 37 °C, and then hemolyzed. The level of oxidative stress was determined by examining the level of thiol groups, the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase), and by measuring erythrocyte microviscosity. Results: The level of thiol groups in stored erythrocytes decreased; however, in the presence of higher concentrations of C60(OH)36 (100 and 150 µg/mL), the level of -SH groups increased compared to the control. Extending the incubation to 48 h caused a decrease in antioxidant enzyme activity, but the addition of fullerenol, especially at higher concentrations (100-150 µg/mL), increased its activity. We observed that C60(OH)36 had no effect on the microviscosity of the interior of the erythrocytes. Conclusions: In conclusion, our results indicated that water-soluble C60(OH)36 has antioxidant potential and efficiently supports the enzymatic antioxidant system within the cell. These effects are probably related to the direct interaction of C60(OH)36 with the enzyme that causes its structural changes.


Subject(s)
Antioxidants/metabolism , Erythrocytes/drug effects , Fullerenes/pharmacology , Erythrocytes/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Humans , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/metabolism
14.
Antioxidants (Basel) ; 9(11)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33171969

ABSTRACT

In this communication we demonstrate that two natural isothiocyanates, sulforaphane (SFN) and erucin (ERN), inhibit autoxidation of lipids at 140 °C but not below 100 °C. This effect is due to thermal decomposition of ERN and SFN to sulfenic acids and methylsulfinyl radicals, species able to trap lipidperoxyl radicals. Our observations shed new light on thermal processing of vegetables containing these two isothiocyanates.

16.
Free Radic Biol Med ; 160: 734-744, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32871231

ABSTRACT

Polyhydroxylated fullerenes (fullerenols) are excellent free radical scavengers. Despite the large number of reports on their reactions with reactive oxygen species, there is no report on their ability to trap lipid peroxyl radicals and act as chain-breaking antioxidants. In this work we studied the effect of fullerenol C60(OH)36 on the kinetics of peroxidation of polyunsaturated fatty acid ester (methyl linoleate) dispersed in two model systems that mimic biological systems: Triton X-100 micelles and Large Unilamellar Vesicles, at pH 4, 7 and 10. As a control antioxidant 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMHC, an analog of α-tocopherol) was used. In micellar systems at pH 4.0, C60(OH)36 reacts with peroxyl radicals with kinh= (5.8 ± 0.3) × 103 M-1s-1 (for PMHC kinh = 22 × 103 M-1s-1). Surprisingly, at pH 7 a retardation instead of inhibition was recorded, and at pH 10 no effect on the kinetics of the process was observed. In liposomal systems fullerenol was not active at pH 4.0 but at pH 7.0 kinh = (8.8 ± 2.6) × 103 M-1s-1 for fullerenol was 30% lower than kinh for PMHC. Using two fluorescent probes we confirmed that at pH 7.4 fullerenol/fullerenol anions are incorporated into the phospholipid heads of the bilayer. We also studied the cooperation of C60(OH)36 with PMHC: both compounds seem to contribute their peroxyl radical trapping abilities independently at pH 4 whereas at pH 7 and 10 a hyper-synergy was observed. The antioxidant action of C60(OH)36 and its synergy with PMHC was also confirmed for peroxidation of human erythrocytes at pH 7.4. Assuming the simplified structural model of fullerenol limited to 36 hydroxyls as the only functional groups attached to C60 core we found by density-functional theory a low energy structure with OH groups distributed in the form of two polyhydroxyl regions separating two unsubstituted carbon regions with biphenyl-like structure. Our calculations indicate that abstraction of hydrogen atom from fullerenol by peroxyl or tocopheroxyl radical is endoergic. As the electron transfer from fullerenol polyanion to the radicals is also energetically disfavoured, the most probable mechanism of reaction with radicals is subsequent addition of peroxyl/tocopheroxyl radicals to biphenyl moieties surrounded by OH groups.


Subject(s)
Antioxidants , Fullerenes , Free Radical Scavengers , Humans , Lipid Peroxidation , Liposomes , alpha-Tocopherol
17.
Antioxidants (Basel) ; 9(1)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31968662

ABSTRACT

Herein, we describe the synthesis of a fluorescent probe NB-2 and its use for the detection of peroxyl radicals. This probe is composed of two receptor segments (4-hydroxycinnamyl moieties) sensitive towards peroxyl radicals that are conjugated with a fluorescent reporter, dipyrrometheneboron difluoride (BODIPY), whose emission changes depend on the oxidation state of the receptors. The measurement of the rate of peroxidation of methyl linoleate in a micellar system in the presence of 1.0 µM NB-2 confirmed its ability to trap lipid peroxyl radicals with the rate constant kinh = 1000 M-1·s-1, which is ten-fold smaller than for pentamethylchromanol (an analog of α-tocopherol). The reaction of NB-2 with peroxyl radicals was further studied via fluorescence measurements in methanol, with α,α'-azobisisobutyronitrile (AIBN) used as a source of radicals generated by photolysis or thermolysis, and in the micellar system at pH 7.4, with 2,2'-azobis(2-amidinopropane) (ABAP) used as a thermal source of the radicals. The reaction of NB-2 receptors with peroxyl radicals manifests itself by the strong increase of a fluorescence with a maximum at 612-616 nm, with a 14-fold enhancement of emission in methanol and a 4-fold enhancement in the micelles, as compared to the unoxidized probe. Our preliminary results indicate that NB-2 behaves as a "switch on" fluorescent probe that is suitable for sensing peroxyl radicals in an organic lipid environment and in bi-phasic dispersed lipid systems.

18.
Redox Biol ; 28: 101337, 2020 01.
Article in English | MEDLINE | ID: mdl-31622846

ABSTRACT

Cellular senescence may contribute to aging and age-related diseases and senolytic drugs that selectively kill senescent cells may delay aging and promote healthspan. More recently, several categories of senolytics have been established, namely HSP90 inhibitors, Bcl-2 family inhibitors and natural compounds such as quercetin and fisetin. However, senolytic and senostatic potential of nanoparticles and surface-modified nanoparticles has never been addressed. In the present study, quercetin surface functionalized Fe3O4 nanoparticles (MNPQ) were synthesized and their senolytic and senostatic activity was evaluated during oxidative stress-induced senescence in human fibroblasts in vitro. MNPQ promoted AMPK activity that was accompanied by non-apoptotic cell death and decreased number of stress-induced senescent cells (senolytic action) and the suppression of senescence-associated proinflammatory response (decreased levels of secreted IL-8 and IFN-ß, senostatic action). In summary, we have shown for the first time that MNPQ may be considered as promising candidates for senolytic- and senostatic-based anti-aging therapies.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Ferric Compounds , Fibroblasts/drug effects , Fibroblasts/metabolism , Nanoparticles , Oxidants/pharmacology , Quercetin/metabolism , Apoptosis , Biomarkers , Cells, Cultured , Cellular Senescence , Extracellular Space/metabolism , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Immunophenotyping , Models, Biological , Nanoparticles/chemistry , Nanoparticles/metabolism , Oxidative Stress , Quercetin/chemistry
19.
Antioxidants (Basel) ; 9(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861581

ABSTRACT

Functionalized nanoparticles (NPs) attract great attention in pharmacy, diagnostics, and biomedical areas due to benefits like localization and unique interactions of NPs with biocomponents of living cells. In the present paper, we prepared and characterized two kinds of gold nanoparticles (AuNPs) coated with α-tocopherol-like residues: 1A were soluble in non-polar solvents and their antioxidant activity was tested during the peroxidation of a model hydrocarbon in a homogeneous system, whereas nanoparticles 1B were soluble in polar solvents and were applied as antioxidants in micellar and liposomal systems. The effectiveness of 1A is comparable to 2,2,5,7,8-pentamethylchroman-6-ol (PMHC, an analogue of α-tocopherol). Taking the results of the kinetic measurements, we calculated an average number of 2150 chromanol residues per one NP, suggesting a thick organic coating around the metal core. In heterogeneous systems, the peroxidation of methyl linoleate dispersed in Triton X-100 micelles or DMPC liposomes resulted in the observation that 1B (545 chromanol residues per one NP) was active enough to effectively inhibit peroxidation in a micellar system, but in a liposomal system, 1B behaved as a retardant (no clear induction period). The importance of microenvironment in heterogeneous systems on the overall antioxidant activity of nanoparticles is discussed.

20.
Biogerontology ; 20(6): 783-798, 2019 12.
Article in English | MEDLINE | ID: mdl-31372798

ABSTRACT

Curcumin, a phytochemical present in the spice named turmeric, and one of the promising anti-aging factors, is itself able to induce cellular senescence. We have recently shown that cells building the vasculature senesced as a result of curcumin treatment. Curcumin-induced senescence was DNA damage-independent; however, activation of ATM was observed. Moreover, neither increased ROS production, nor even ATM were indispensable for senescence progression. In this paper we tried to elucidate the mechanism of curcumin-induced senescence. We analyzed the time-dependence of the level and activity of numerous proteins involved in senescence progression in vascular smooth muscle cells and how inhibition p38 or p38 together with ATM, two proteins involved in canonical signaling pathways, influenced cell senescence. We showed that curcumin was able to influence many signaling pathways of which probably none was dominant and sufficient to induce senescence by itself. However, we cannot exclude that the switch between initiation and progression of senescence is the result of the impact of curcumin on signaling pathways engaging AMPK, ATM, sirtuin 1 and p300 and on their reciprocal interplay. Cytostatic concentration of curcumin induced cellular stress, which exceeded the adaptive response and, in consequence, led to cellular senescence, which is triggered by time dependent activation of several signaling pathways playing diverse roles in different phases of senescence progression. We also showed that activity of ß-glucuronidase, the enzyme involved in deconjugation of the main metabolites of curcumin, glucuronides, increased in senescent cells. It suggests a possible local elevation of curcumin concentration in the organism.


Subject(s)
Cellular Senescence/drug effects , Curcumin/pharmacology , Muscle, Smooth, Vascular/drug effects , Signal Transduction/drug effects , Ataxia Telangiectasia Mutated Proteins/genetics , Down-Regulation , Gene Silencing , Glucuronidase/metabolism , Humans , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...