Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 8581, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26466022

ABSTRACT

Data-driven discovery in complex neurological disorders has potential to extract meaningful syndromic knowledge from large, heterogeneous data sets to enhance potential for precision medicine. Here we describe the application of topological data analysis (TDA) for data-driven discovery in preclinical traumatic brain injury (TBI) and spinal cord injury (SCI) data sets mined from the Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI) repository. Through direct visualization of inter-related histopathological, functional and health outcomes, TDA detected novel patterns across the syndromic network, uncovering interactions between SCI and co-occurring TBI, as well as detrimental drug effects in unpublished multicentre preclinical drug trial data in SCI. TDA also revealed that perioperative hypertension predicted long-term recovery better than any tested drug after thoracic SCI in rats. TDA-based data-driven discovery has great potential application for decision-support for basic research and clinical problems such as outcome assessment, neurocritical care, treatment planning and rapid, precision-diagnosis.


Subject(s)
Brain Injuries , Computational Biology/methods , Disease Models, Animal , Spinal Cord Injuries , Animals , Data Interpretation, Statistical , Rats
2.
Brain Res ; 1619: 124-38, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-25451131

ABSTRACT

Recent preclinical advances highlight the therapeutic potential of treatments aimed at boosting regeneration and plasticity of spinal circuitry damaged by spinal cord injury (SCI). With several promising candidates being considered for translation into clinical trials, the SCI community has called for a non-human primate model as a crucial validation step to test efficacy and validity of these therapies prior to human testing. The present paper reviews the previous and ongoing efforts of the California Spinal Cord Consortium (CSCC), a multidisciplinary team of experts from 5 University of California medical and research centers, to develop this crucial translational SCI model. We focus on the growing volumes of high resolution data collected by the CSCC, and our efforts to develop a biomedical informatics framework aimed at leveraging multidimensional data to monitor plasticity and repair targeting recovery of hand and arm function. Although the main focus of many researchers is the restoration of voluntary motor control, we also describe our ongoing efforts to add assessments of sensory function, including pain, vital signs during surgery, and recovery of bladder and bowel function. By pooling our multidimensional data resources and building a unified database infrastructure for this clinically relevant translational model of SCI, we are now in a unique position to test promising therapeutic strategies' efficacy on the entire syndrome of SCI. We review analyses highlighting the intersection between motor, sensory, autonomic and pathological contributions to the overall restoration of function. This article is part of a Special Issue entitled SI: Spinal cord injury.


Subject(s)
Disease Models, Animal , Medical Informatics , Neuronal Plasticity , Recovery of Function , Spinal Cord Injuries/therapy , Spinal Cord Regeneration , Animals , Humans , Macaca mulatta , Motor Activity , Spinal Cord Injuries/physiopathology , Translational Research, Biomedical , Treatment Outcome
3.
J Neurotrauma ; 31(21): 1789-99, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25077610

ABSTRACT

Efforts to understand spinal cord injury (SCI) and other complex neurotrauma disorders at the pre-clinical level have shown progress in recent years. However, successful translation of basic research into clinical practice has been slow, partly because of the large, heterogeneous data sets involved. In this sense, translational neurological research represents a "big data" problem. In an effort to expedite translation of pre-clinical knowledge into standards of patient care for SCI, we describe the development of a novel database for translational neurotrauma research known as Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI). We present demographics, descriptive statistics, and translational syndromic outcomes derived from our ongoing efforts to build a multi-center, multi-species pre-clinical database for SCI models. We leveraged archived surgical records, postoperative care logs, behavioral outcome measures, and histopathology from approximately 3000 mice, rats, and monkeys from pre-clinical SCI studies published between 1993 and 2013. The majority of animals in the database have measures collected for health monitoring, such as weight loss/gain, heart rate, blood pressure, postoperative monitoring of bladder function and drug/fluid administration, behavioral outcome measures of locomotion, and tissue sparing postmortem. Attempts to align these variables with currently accepted common data elements highlighted the need for more translational outcomes to be identified as clinical endpoints for therapeutic testing. Last, we use syndromic analysis to identify conserved biological mechanisms of recovery after cervical SCI between rats and monkeys that will allow for more-efficient testing of therapeutics that will need to be translated toward future clinical trials.


Subject(s)
Databases, Factual , Spinal Cord Injuries/physiopathology , Translational Research, Biomedical , Animals , Computational Biology , Haplorhini , Mice , Models, Animal , Rats
4.
Proc Natl Acad Sci U S A ; 106(16): 6459-64, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19380751

ABSTRACT

A common form of quorum sensing in gram-positive bacteria is mediated by peptides that act as phosphatase regulators (Phr) of receptor aspartyl phosphatases (Raps). In Bacillus subtilis, several Phr signals are integrated in sporulation phosphorelay signal transduction. We theoretically demonstrate that the phosphorelay can act as a computational machine performing a sensitive division operation of kinase-encoded signals by quorum-modulated Rap signals, indicative of cells computing a "food per cell" estimate to decide whether to enter sporulation. We predict expression from the rapA-phrA operon to bifurcate as relative environmental signals change in a developing population. We experimentally observe that the rapA-phrA operon is heterogeneously induced in sporulating microcolonies. Uninduced cells sporulate rather synchronously early on, whereas the RapA/PhrA subpopulation sporulates less synchronously throughout later stationary phase. Moreover, we show that cells sustain PhrA expression during periods of active growth. Together with the model, these findings suggest that the phosphorelay may normalize environmental signals by the size of the (sub)population actively competing for nutrients (as signaled by PhrA). Generalizing this concept, the various Phrs could facilitate subpopulation communication in dense isogenic communities to control the physiological strategies followed by differentiated subpopulations by interpreting (environmental) signals based on the spatiotemporal community structure.


Subject(s)
Bacillus subtilis/cytology , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Quorum Sensing , Signal Transduction , Computational Biology , Feedback, Physiological , Fluorescence , Models, Biological , Spores, Bacterial/cytology , Spores, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...