Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 14(3): 2493-2496, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28962185

ABSTRACT

The present study aimed to reveal the expression changes of complement system activation and complement activation product C3a receptor during acute myocardial infarction. Blood samples were collected from healthy individuals and from patients with coronary artery stenosis or acute myocardial infarction. The subjects received physical examination in hospital between January and July 2015 (n=5). Cytometric bead array was performed to measure the levels of complement system activation product anaphylatoxin C3a, C4a and C5a. Immunohistochemical investigations were performed in tissues of patients who underwent coronary artery bypass grafting between January and July 2015 to detect the expression of C3a receptor. The results of cytometric bead array showed that the content of complement activation products C3a, C4a and C5a in the plasma of patients with coronary artery stenosis and acute myocardial infarction were significantly higher than those of the control group (P<0.01). The results of immunoblotting suggested that the protein expression of C3a receptor in infarct tissues of patients with acute myocardial infarction was significantly higher than that of normal tissues adjacent to the infarcted area (P<0.05). There is complement system activation in patients with acute myocardial infarction. Additionally, the increase in the expression of complement C3a receptor in tissues of infarct area suggested that C3a-C3a receptor signaling pathway may be involved in the development of myocardial infarction.

2.
Stem Cells Transl Med ; 5(8): 1004-13, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27334487

ABSTRACT

UNLABELLED: : Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton's jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p < .05). The systolic thickening fraction in the infarcted left ventricular wall was also improved (41.2% ± 3.3% vs. 46.2% ± 2.3%, p < .01). Additionally, the administration of UC-MSCs promoted collateral development and myocardial perfusion. The indices of fibrosis and apoptosis were also significantly reduced. Immunofluorescence staining showed clusters of CM-DiI-labeled cells in the border zone, some of which expressed von Willebrand factor. These results suggest that UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. SIGNIFICANCE: Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called "no-option" patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation.


Subject(s)
Coronary Circulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction/surgery , Umbilical Cord/cytology , Ventricular Function, Left , Ventricular Remodeling , Wharton Jelly/cytology , Angiogenic Proteins/metabolism , Animals , Apoptosis , Biomarkers/metabolism , Cell Differentiation , Cell Survival , Cells, Cultured , Collateral Circulation , Cytokines/metabolism , Disease Models, Animal , Female , Fibrosis , Humans , Mesenchymal Stem Cells/metabolism , Myocardial Contraction , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocardium/pathology , Neovascularization, Physiologic , Phenotype , Recovery of Function , Stroke Volume , Swine , Time Factors , von Willebrand Factor/metabolism
3.
Oncotarget ; 6(13): 11087-97, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25871476

ABSTRACT

Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. Claudins are aberrantly expressed in aggressive breast cancer. However, the relationship between claudins and VM formation is not clear. We examined VM in two human breast cancer cell lines with different aggressive capabilities (MDA-MB-231 and MCF-7 cells) and one human umbilical vein endothelial cell line (HUVEC). Both HUVEC and MDA-MB-231 cells formed vascular channels in Matrigel cultures, while MCF-7 cells did not. Western blot analysis revealed a possible correlation between claudin-4 and -6 expression in breast cancer cell lines and tumor aggressiveness, with protein levels correlating with the ability to form vascular channels. Treatment of MDA-MB-231 and HUVEC cells with claudin-4 monoclonal antibodies completely inhibited the ability of cells to form vascular channels. Moreover, knockdown of claudin-4 by short hairpin RNA completely inhibited tubule formation in MDA-MB-231 cells. Overexpression of claudin-4 in MCF-7 cells induced formation of vascular channels. Immunocytochemistry revealed that membranous claudin-4 protein was significantly associated with vascular channel formation. Collectively, these results indicate that claudin-4 may play a critical role in VM in human breast cancer cells, opening new opportunities to improve aggressive breast cancer therapy.


Subject(s)
Breast Neoplasms/blood supply , Claudin-4/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Neovascularization, Pathologic , Apoptosis , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Cells, Cultured , Claudin-4/antagonists & inhibitors , Claudin-4/genetics , Female , Fluorescent Antibody Technique , Humans , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
4.
Cell Physiol Biochem ; 22(1-4): 177-86, 2008.
Article in English | MEDLINE | ID: mdl-18769044

ABSTRACT

AIMS: 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a non-selective chloride channel blocker, has been shown to prevent cell apoptosis, however, the underlying mechanisms remain undefined, thus the present study was to explore whether phosphatidylinositol 3'-kinase (PI3K)/Akt and its downstream molecules are involved in the cytoprotective effect of DIDS. METHODS: Neonatal rat cardiomyocytes were exposed to staurosporine (STS) in the presence or absence of DIDS. Cell viability, apoptosis and expressions of Akt, phospho-Akt (p-Akt), eNOS, phospho-eNOS (p-eNOS), Bcl-2/Bax and nitric oxide (NO) production were determined, and Bax translocation was assessed by double immunofluorescence labeling and Western blotting. RESULTS: DIDS markedly improved cell viability and exerted an anti-apoptotic effect on STS-exposed cardiomyocytes. DIDS resulted in a 2.1-fold increase of p-Akt over control levels, prevented the reduction in eNOS expression and phospho-eNOS levels induced by STS and significantly increased NO production (all P<0.01 vs. STS alone). Treatment with LY294002, a selective PI3K inhibitor, abolished DIDS-induced increases in p-Akt, eNOS, p-eNOS and NO production, and completely abrogated the DIDS-induced anti-apoptotic effect (P<0.01). Treatment with L-NAME, a non-selective NOS inhibitor similarly inhibited the increased NO but only partly abolished protective effects of DIDS (P<0.05). In addition, DIDS effectively inhibited STS-induced Bax translocation to mitochondria, which was also reversed by LY294002. CONCLUSION: DIDS protects cardiomyocytes against STS-induced apoptosis via activating PI3K/Akt signaling pathway, including increasing eNOS phosphorylation and the subsequent NO production and inhibiting Bax translocation.


Subject(s)
4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Apoptosis/drug effects , Myocytes, Cardiac/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Staurosporine/pharmacology , bcl-2-Associated X Protein/metabolism , Animals , Caspase 3/metabolism , Cell Survival/drug effects , Cytosol/drug effects , Cytosol/metabolism , DNA Fragmentation/drug effects , Enzyme Activation/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Nitrates/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitrites/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...