Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 12(23): 5164-5171, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31651092

ABSTRACT

The exponentially increasing viscosity of water-lean CO2 absorbents during carbon capture processes is a critical problem for practical application, owing to its strong correlation with systems' mass transfer properties, as well as convenience of transportation. In this work, a concise strategy based on structure-viscosity relationships is proposed and applied to construct a series of functionalized ethylenediamines as single-component absorbents for post-combustion CO2 capture. These nonaqueous absorbents have outstanding viscosities (50-200 cP, 25 °C) at their maximal CO2 capacities (up to 22 wt % or 4.92 mol kg-1 , 1 bar), and are readily regenerated at low temperatures (50-80 °C) under ambient pressure. Additional capture of CO2 through physisorption could also be achieved by operating at high pressures. The CO2 capture and release process is systematically investigated by means of 13 C NMR spectroscopy, differential scanning calorimetry (DSC), in situ FTIR analysis, and density functional theory (DFT) calculations, which could provide sufficient spectroscopic details to reveal the ease of reversibility and enable rational interpretation of the absorption mechanism.

2.
Chem Commun (Camb) ; 52(10): 2145-8, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26698150

ABSTRACT

A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

3.
Phys Chem Chem Phys ; 14(45): 15832-9, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23090138

ABSTRACT

Up to now, flue-gas desulfurization (FGD) is one of the most effective techniques to control SO(2) emission from the combustion of fossil fuels. The conventional technology for FGD poses serious inherent drawbacks such as formation of byproducts and volatilization of solvents. In this work, polyethylene glycol (PEG)-functionalized Lewis basic ionic liquids (ILs) derived from DABCO were proved to be highly efficient absorbents for FGD due to its specific features such as high thermal stability, negligible vapor pressure, high loading capacity. Notably, PEG(150)MeDABCONTf(2) gave an extremely high SO(2) capacity (4.38 mol mol(-1) IL), even under 0.1 bar SO(2) partial pressure (1.01 mol mol(-1) IL), presumably owing to the strong SO(2)-philic characterization of the PEG chain. Furthermore, the absorbed SO(2) could be easy to release by just bubbling N(2) at room temperature, greatly reducing energy requirement for SO(2) desorption. In addition, SO(2)/CO(2) selectivity (110) of PEG(150)MeDABCONTf(2) is two times larger than the non-functionalized imidazolium IL (45). On the other hand, through activation of SO(2) with the tertiary nitrogen in the cation, Lewis basic ILs such as PEG(150)MeDABCOBr proved to be efficient catalysts for the conversion of SO(2) to some value-added chemicals such as cyclic sulfites without utilization of any organic solvent or additive. Thus, this protocol would pave the way for the development of technological innovation towards efficient and low energy demanded practical process for SO(2) absorption and subsequent transformation.


Subject(s)
Ionic Liquids/chemistry , Polyethylene Glycols/chemistry , Sulfur Dioxide/chemistry , Molecular Structure , Sulfites/chemical synthesis , Sulfites/chemistry
4.
Angew Chem Int Ed Engl ; 51(45): 11306-10, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23042720

ABSTRACT

Steric bulk controls CO(2) absorption: N-substituted amino acid salts in poly(ethylene glycol) reversibly absorb CO(2) in nearly 1:1 stoichiometry. Carbamic acid is thought to be the absorbed form of CO(2); this was supported by NMR and in situ IR spectroscopy, and DFT calculations. The captured CO(2) could be converted directly into oxazolidinones and thus CO(2) desorption could be sidestepped.


Subject(s)
Amino Acids/chemistry , Carbon Dioxide/chemistry , Carbamates/chemistry , Magnetic Resonance Spectroscopy
5.
J Org Chem ; 73(12): 4709-12, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18473439

ABSTRACT

A quaternary ammonium bromide covalently bound to polyethylene glycol (PEG, MW = 6000), i.e., PEG(6000-)(NBu(3)Br)2, was found to be an efficient and recyclable catalyst for the cycloaddition reaction of aziridines to CO(2) under mild conditions without utilization of additional organic solvents or cocatalysts. As a result, 5-aryl-2-oxazolidinone was obtained in high yield with excellent regioselectivity. The catalyst worked well for a wide variety of 1-alkyl-2-arylaziridines. Besides, the catalyst could be recovered by centrifugation and reused without significant loss of catalytic activity and selectivity.

6.
J Am Chem Soc ; 124(45): 13358-9, 2002 Nov 13.
Article in English | MEDLINE | ID: mdl-12418868

ABSTRACT

A promising strategy for the controlled synthesis of inorganic/polymeric nanocomposites may be sustained by fabricating cross-linked PbS nanoparticles/polymer composite thin films through combining surface-initiated atom transfer radical polymerization (ATRP) and gas/solid reaction. The introduction of Pb ions through the extension of surface-initiated ATRP to the monomers containing metal ions provides an opportunity for generating nanoparticles on the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...