Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 11(7)2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30029556

ABSTRACT

The recrystallization (RX) behavior of superalloy during standard solution heat treatment (SSHT) varies significantly with deformation temperature. Single-crystal (SX) samples of Ni-base superalloy were compressed to 5% plastic deformation at room temperature (RT) and 980 °C, and the deformed samples were then subjected to SSHT process which consists of 1290 °C/1 h, 1300 °C/2 h, and 1315 °C/4 h, air cooling. RT-deformed samples showed almost no RX grains until the annealing temperature was elevated to 1315 °C, while 980 °C-deformed samples showed a large number of RX grains in the initial stage of SSHT. It is inferred that the strengthening effect of γ' phases and the stacking faults in them increase the driving force of RX for 980 °C-deformed samples. The RX grains nucleate and grow in dendritic arms preferentially when the microstructural inhomogeneity is not completely eliminated by SSHT. A model coupling crystal plasticity finite element method (CPFEM) and cellular automaton (CA) method was proposed to simulate the RX evolution during SSHT. One ({111} <110>) and three ({111} <110>, {100} <110>, {111} <112>) slip modes were assumed to be activated at RT and 980 °C in CPFEM calculations, respectively. The simulation takes the inhomogeneous as-cast dendritic microstructure into consideration. The simulated RX morphology and density conform well to experimental results.

2.
Pulm Pharmacol Ther ; 28(1): 17-24, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24269521

ABSTRACT

BACKGROUND: Pulmonary artery endothelial dysfunction has been demonstrated in pulmonary arterial hypertension (PAH). Telmisartan has beneficial effects in endothelial function in PAH patients; however, the underlying mechanisms for these effects remain unknown. AIMS: In this study, we observed the effects of telmisartan on monocrotaline (MCT)-induced Sprague Dawley (SD) rat model of PAH. METHODS: After a single-dose injection of MCT (60 mg/kg), oral administration of telmisartan (10 mg/kg/d) was started from day 1 to day 28 or with saline as MCT control. The vasorelaxation and remodelling of pulmonary arteries; the expression of peroxisome proliferator-activated receptor γ (PPARγ), Akt, eNOS; levels of phosphorylation of Akt (p-Akt) and phosphorylation of eNOS (p-eNOS) were analysed in isolated rat pulmonary arteries and cultured human pulmonary artery endothelial cells (HPAECs). RESULTS: Compared to MCT control group, telmisartan treatment ameliorated pulmonary artery endothelial dysfunction and remodelling, prevented the elevation of right ventricular systolic pressure (RVSP) induced by MCT. Immunoblotting results indicated lower levels of PPARγ, p-Akt and p-eNOS in pulmonary arteries treated with MCT alone and levels were significantly restored by co-treatment with telmisartan. In isolated pulmonary arteries, the impaired endothelium-dependent vasorelaxation of pulmonary arteries was improved following incubation with telmisartan for 12 h, whereas this effect was blocked by the inhibition of either PPARγ or phosphoinositide 3-kinase (PI3K) signals transduction. In cultured HPAECs, treatment with telmisartan increased PPARγ expression and promoted the phosphorylation of Akt and eNOS, thereby increasing the production of NO. These effects were abolished by the inhibition of PPARγ or PI3K. CONCLUSION: Telmisartan protected against endothelial dysfunction in MCT-induced PAH through a PPARγ-dependent PI3K/Akt/eNOS pathway. Thus, telmisartan may be a promising therapeutic strategy for patients with a high risk of PAH.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Benzimidazoles/pharmacology , Benzoates/pharmacology , Endothelium, Vascular/drug effects , Pulmonary Artery/drug effects , Animals , Disease Models, Animal , Endothelium, Vascular/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Male , Monocrotaline/toxicity , Nitric Oxide Synthase Type III/metabolism , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/pathology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Telmisartan
3.
Materials (Basel) ; 7(3): 1625-1639, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-28788535

ABSTRACT

The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process.

SELECTION OF CITATIONS
SEARCH DETAIL
...