Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 28(9): 212, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37796690

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly lethal tumor type, but studies on the ESCC tumor microenvironment are limited. We found that cystatin SN (CST1) plays an important role in the ESCC tumor microenvironment. CST1 has been reported to act as an oncogene in multiple human cancers, but its clinical significance and underlying mechanism in ESCC remain elusive. METHODS: We performed ESCC gene expression profiling with data from RNA-sequencing and public databases and found CST1 upregulation in ESCC. Then, we assessed CST1 expression in ESCC by RT‒qPCR and Western blot analysis. In addition, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to estimate the expression of CST1 in ESCC tissue and serum. Moreover, further functional experiments were conducted to verify that the gain and loss of CST1 in ESCC cell lines significantly influenced the proliferation and metastasis of ESCC. Mass spectrometry, coimmunoprecipitation, and gelatin zymography experiments were used to validate the interaction between CST1 and matrix metalloproteinase 2 (MMP2) and the mechanism of CST1 influence on metastasis in ESCC. RESULTS: Here, we found that CST1 expression was significantly elevated in ESCC tissues and serum. Moreover, compared with patients with low CST1 expression, patients with high CST1 expression had a worse prognosis. Overall survival (OS) and disease-free survival (DFS) were significantly unfavorable in the high CST1 expression subgroup. Likewise, the CST1 level was significantly increased in ESCC serum compared with healthy control serum, indicating that CST1 may be a potential serum biomarker for diagnosis, with an area under the curve (AUC) = 0.9702 and p < 0.0001 by receiver operating curve (ROC) analysis. Furthermore, upregulated CST1 can promote the motility and metastatic capacity of ESCC in vitro and in vivo by influencing epithelial mesenchymal transition (EMT) and interacting with MMP2 in the tumor microenvironment (TME). CONCLUSIONS: Collectively, the results of this study indicated that high CST1 expression mediated by SPI1 in ESCC may serve as a potentially prognostic and diagnostic predictor and as an oncogene to promote motility and metastatic capacity of ESCC by influencing EMT and interacting with MMP2 in the TME.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Up-Regulation , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition , Tumor Microenvironment/genetics
2.
Environ Dev Sustain ; 25(4): 2977-3003, 2023.
Article in English | MEDLINE | ID: mdl-35221786

ABSTRACT

With the increasing attention and awareness of the ecological environment, ecotourism is becoming ever more popular, but it still brings problems and challenges to the sustainable development of the environment. To solve such challenges, it is necessary to review literature in the field of ecotourism and determine the key research issues and future research directions. This paper uses scientometrics implemented by CiteSpace to conduct an in-depth systematic review of research and development in the field of ecotourism. Two bibliographic datasets were obtained from the Web of Science, including a core dataset and an expanded dataset, containing articles published between 2003 and 2021. Our research shows that ecotourism has been developing rapidly in recent years. The research field of ecotourism spans many disciplines and is a comprehensive interdisciplinary subject. According to the research results, the evolution of ecotourism can be roughly divided into three phases: human disturbance, ecosystem services and sustainable development. It could be concluded that it has entered the third stage of Shneider's four-stage theory of scientific discipline. The research not only identifies the main clusters and their advance in ecotourism research based on high impact citations and research frontier formed by citations, but also presents readers with new insights through intuitive visual images. Supplementary Information: The online version contains supplementary material available at 10.1007/s10668-022-02190-0.

3.
Cancer Gene Ther ; 30(2): 375-387, 2023 02.
Article in English | MEDLINE | ID: mdl-36357564

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in China. However, there are no targets to treat ESCC because the molecular mechanism behind the cancer is still unclear. Here, we found a novel long noncoding RNA LINC02820 was upregulated in ESCC and associated with the ESCC clinicopathological stage. Through a series of functional experiments, we observed that LINC02820 only promoted the migration and invasion capabilities of ESCC cell lines. Mechanically, we found that LINC02820 may affect the cytoskeletal remodeling, interact with splice factor 3B subunit 3 (SF3B3), and cooperate with TNFα to amplify the NF-κB signaling pathway, which can lead to ESCC metastasis. Overall, our findings revealed that LINC02820 is a potential biomarker and therapeutic target for the diagnosis and treatment of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Long Noncoding , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Signal Transduction , Cytoskeleton/genetics , Cytoskeleton/metabolism , Cytoskeleton/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
4.
Nanoscale Horiz ; 3(6): 616-623, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-32254114

ABSTRACT

Rational control of the multiple emission outputs and achieving single-band and strong luminescence of Ln3+ doped upconversion nanoparticles is highly desirable for their applications in sensor and display fields. Here, we designed a sandwich structure to separate and enhance the green and red emission of NaYF4:Yb3+/Er3+ simultaneously and realized pure strong green and red emissions. NaYF4:Yb3+/Er3+ nanocrystals were sandwiched between two layers of photonic crystals, which have bandgaps at 660 nm and 530 nm, respectively. The photonic crystal with a bandgap at 530 nm on top of the NaYF4:Yb3+/Er3+ layer can filter the green emission of NaYF4:Yb3+/Er3+, prohibiting its emission upward, and at the same time, enhancing its emission downward. Similarly, the photonic crystal with a bandgap at 660 nm can prohibit the transmission of the red emission, and at the same time enhance its reflection in the opposite direction. Consequently, enhanced green emission was observed from the bottom of the sandwich structure and enhanced red emission was observed from the top of the sandwich structure. Thus, the green and red emissions of NaYF4:Yb3+/Er3+ were separated and both of them were enhanced. On the other hand, when using a photonic crystal with a bandgap that overlapped with the excitation light of NaYF4:Yb3+/Er3+ nanoparticles, their emissions were all greatly enhanced. Our results suggest that photonic crystals are good candidates to separate and enhance the emissions of Ln3+ doped luminescent materials.

5.
J Phys Chem Lett ; 8(13): 2835-2841, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28598163

ABSTRACT

Inkjet-printed structural color patterns have attracted great attention in recent years because of their broadly promising applications. However, the patterns are usually fabricated on pretreated plastic substrates. Herein a convenient inkjet printing method was developed to fabricate large-scale computer-designed structural color patterns on photo paper without any treatment using inks containing monodisperse CdS spheres. By this strategy, not only were the single-color and multicolor structural color patterns on paper successfully obtained, but also invisible photonic anticounterfeiting was achieved without any external stimuli. The key point of this anticounterfeiting technique is printing patterns and the background with inks containing uniformed CdS spheres with different diameters but similar intrinsic colors, so that the invisible patterns can be observed clearly by simply changing the viewing angle. The invisible and visible can be realized without the change of intrinsic structure, and the patterns are all solids. The patterns will have long lifetime and good durability, which is beneficial for their practical usage.

SELECTION OF CITATIONS
SEARCH DETAIL
...