Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(23): 11974-11987, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38801162

ABSTRACT

Photocatalysis is a physiochemical effect arising from the relaxation of photoinduced electrons from the conduction band to the valence band. Controlling the electron relaxation to occur through photocatalytic pathways and prohibiting other relaxations is the main scientific thought for photocatalytic studies. It is needed to know the parallel relaxation pathways that can compete with photocatalytic reactions. By means of in situ photoconductances (PCs) and photoinduced absorptions (PAs), the current research studied the photoinduced electron relaxations of the Au/TiO2 in different atmospheres and at different temperatures. The PC and PA relaxations became different and fast when methanol, ethanol, isopropanol, and acetone were introduced; they also tend to decrease as temperature increases, while that of the undecorated TiO2 in all atmospheres and the Au/TiO2 in pure N2 increased. The results indicated that the organic adsorptions over the Au/TO2 perimeters change the relaxation pathway, and a hole-capturing organics adsorption-induced recombination over the Au/TiO2 perimeter was proposed to explain the relaxations. We found that this relaxation also exists for Ag/TiO2, Pt/TiO2, and Au/ZnO, so it is a commonly existing physical course for the metal/semiconductor (M/S) materials. The effect of the organics and M/S structures on the relaxation was discussed, and the relationship with photocatalytic reactions was also analyzed. Our finding means that blocking this relaxation pathway is an effective way to increase photocatalytic activities, which might open a door for highly active photocatalyst developments.

2.
Phys Chem Chem Phys ; 26(14): 11113-11125, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38530657

ABSTRACT

Electron transfer and its kinetics play a major role in the photocatalysis of metal/semiconductor systems. Using in situ photoconductances, in situ photoabsorption, and photoinduced spectroscopic techniques, the present research aimed to gain a deep insight into electron transfer pathways and their kinetics for Ag/TiO2 systems under sub-bandgap light illumination and gaseous conditions. The results revealed that electrons generated in TiO2 can transfer to Ag nanoparticles at fast rates, and plasmon-generated electrons in Ag nanoparticles can also transfer to TiO2. However, it was found that plasmon-assisted hot electron transfer efficiency is much lower than the electron transition from the valence band to the conduction band of TiO2. Rather than plasmonic active spots, the results showed that Ag nanoparticles acted as co-catalyst sites bridging electron transfer to recombination in a methanol-containing N2 atmosphere. As a result, photocatalytic isopropanol dehydrogenation was decreased. Independent of Ag decorations, it was also indicated that isopropanol dehydrogenation mainly occurred over TiO2 surfaces; therefore, Ag nanoparticles did not increase photocatalytic activities. Our results may provide a different viewpoint on sub-bandgap light-induced Ag/TiO2 photocatalysis under gaseous conditions; this may also facilitate the understanding of the photocatalytic mechanism of metal/semiconductor systems.

3.
Adv Mater ; 35(44): e2304625, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466632

ABSTRACT

Vapor deposition is a promising technology for the mass production of perovskite solar cells. However, the efficiencies of solar cells and modules based on vapor-deposited perovskites are significantly lower than those fabricated using the solution method. Emerging evidence suggests that large defects are generated during vapor deposition owing to a specific top-down crystallization mechanism. Herein, a hybrid vapor deposition method combined with solvent-assisted recrystallization for fabricating high-quality large-area perovskite films with low defect densities is presented. It is demonstrated that an intermediate phase can be formed at the grain boundaries, which induces the secondary growth of small grains into large ones. Consequently, perovskite films with substantially reduced grain boundaries and defect densities are fabricated. Results of temperature-dependent charge-carrier dynamics show that the proposed method successfully suppresses all recombination reactions. Champion efficiencies of 21.9% for small-area (0.16 cm2 ) cells and 19.9% for large-area (10.0 cm2 ) solar modules under AM 1.5 G irradiation are achieved. Moreover, the modules exhibit high operational stability, i.e., they retain >92% of their initial efficiencies after 200 h of continuous operation.

4.
Phys Chem Chem Phys ; 25(29): 20134-20144, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37463042

ABSTRACT

Noble metal nanoparticles are widely used as co-catalysts for storing and separating electrons in semiconductor photocatalysis. Thus, evaluating this ability is important and meaningful to understand the photocatalytic mechanism. Employing Ag nanoparticles, the present study combined in situ photoconductance and theoretical analysis to evaluate the Fermi-level (EF) shift in a UV-illuminated Ag/TiO2 system under gaseous conditions. Based on this, the role of the Ag nanoparticles in storing and separating electrons was discussed. It was found that the EF of Ag/TiO2 is located deeper in the gap and a variation in temperature has less effect on the EF of Ag/TiO2 compared to the undecorated TiO2. The analysis showed that ∼46 electrons can be stored in 10 nm Ag nanoparticles under our experimental conditions, which does not change with temperature. The electron traps in TiO2 can affect the electron distribution in the TiO2 and Ag nanoparticles. It was observed that the localized surface plasmon resonance (LSPR) of the Ag nanoparticles exhibited a blue-shift under UV light illumination, which is generally ascribed to the electron storage in the Ag nanoparticles. However, we showed that the blue-shift is not related to the electron storage in the Ag nanoparticles, and thus it cannot be used as an indicator for evaluating their electron-storage ability. The in situ XPS analysis also does not support that the LSPR blue shift is associated with the reduction in the Ag2O layer and TiO2.

5.
NPJ Sci Food ; 7(1): 7, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36928372

ABSTRACT

The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.

6.
ACS Omega ; 7(48): 43710-43718, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506168

ABSTRACT

In the current research, P25 TiO2 materials sealed in quartz vacuum tubes were subject to annealing and ice-water post-quenching, with the effects on TiO2 structures, morphology, and photocatalytic activity being studied. It is shown that the vacuum-sealed annealing can lead to a decrease in the crystallinity and temperature of anatase-to-rutile phase transition. A disorder layer is formed over TiO2 nanoparticles, and the TiO2 lattices are distorted between the disorder layer and crystalline core. The ice-water post-quenching almost has no effect on the crystalline structure and morphology of TiO2. It can be seen that the vacuum-sealed annealing can generate more defects, and the electrons are mainly localized at lattice Ti sites, as well as the percentage of bulk oxygen defects is also increased. Although further ice-water post-quenching can introduce more defects in TiO2, it does not affect the electron localization and defect distribution. The vacuum-sealed annealing process can increase the photocatalytic acetone oxidations of the anatase phase TiO2 to some extent, possibly because of the defect generation and Ti3+ site formation; the further ice-water quenching leads to a decrease in the photocatalytic activity because more defects are introduced.

7.
Front Plant Sci ; 13: 1016511, 2022.
Article in English | MEDLINE | ID: mdl-36311102

ABSTRACT

Pruning is an important strategy for increasing tea production. However, the effects of pruning on tea quality are not well understood. In this study, tea leaves were collected from Wuyi Mountain for both ionomic and metabolomic analyses. A total of 1962 and 1188 fresh tea leaves were respectively collected from pruned and unpruned tea plants sampled across 350 tea plantations. Ionomic profiles of fresh tea leaves varied significantly between pruned and unpruned sources. For tea plants, pruning was tied to decreases in the concentrations of mobile elements, such as nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg), and dramatic increases in the concentrations of the immobile ions calcium (Ca), aluminum (Al), manganese (Mn), boron (B) and cobalt (Co). Clustering and heatmap analysis showed that pruning also affected tea leaf metabolism. Among 85 metabolites that were significantly impacted by pruning, 30 were identified through random forest analysis as characteristic differential metabolites with a prediction rate of 86.21%. Redundancy analysis showed that pruning effects on mineral nutrient concentrations accounted for 25.54% of the variation in characteristic metabolites between treatments, with the highest contributions of 6.64% and 3.69% coming from Ca and Mg, respectively. In correlation network analysis, Ca and Mg both exhibited close, though opposing correlations with six key metabolites, including key quality indicators 1,3-dicaffeoylquinic acid and 2-O-caffeoyl arbutin. In summary, large scale sampling over hundreds of tea plantations demonstrated that pruning affects tea quality, mainly through influences on leaf mineral composition, with Ca and Mg playing large roles. These results may provide a solid scientific basis for improved management of high-quality tea plantations.

8.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630739

ABSTRACT

The execution of specific processing protocols endows Wuyi rock tea with distinctive qualities produced through signature metabolic processes. In this work, tea leaves were collected before and after each of three processing stages for both targeted and untargeted metabolomic analysis. Metabolic profiles of processing stages through each processing stage of rotation, pan-firing and roasting were studied. Overall, 614 metabolites were significantly altered, predominantly through nitrogen- enriching (N) pathways. Roasting led to the enrichment of 342 N metabolites, including 34 lipids, 17 organic acids, 32 alkaloids and 25 amino acids, as well as secondary derivatives beneficial for tea quality. This distinctive shift towards enrichment of N metabolites strongly supports concluding that this directed accumulation of N metabolites is how each of the three processing stages endows Wuyi rock tea with singular quality.


Subject(s)
Metabolomics , Nitrogen , Amino Acids/metabolism , Metabolome , Metabolomics/methods , Tea/chemistry
9.
Phys Chem Chem Phys ; 24(9): 5618-5626, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35175261

ABSTRACT

Pristine TiO2 materials are mainly used as photocatalysts under super-bandgap light illumination. The sub-bandgap (SBG) photocatalytic response has seldom been investigated and the mechanism of action remains unclear. In the current research, we firstly study the SBG light electronic transition of pristine P25 TiO2 by means of in situ diffusion reflectance and (photo)conductance measurements under finely controllable conditions. It is revealed that the SBG light can promote valence band (VB) electrons to the exponentially-distributed gap states of the TiO2, which can then be thermally activated to the CB states. A hole in the VB and an electron in the CB can be generated by the synergism of a SBG photon and heat. It is also seen that the photoinduced electrons can transfer to O2 through the CB states, and that the holes can be captured by isopropanol molecules. As a result, isopropanol dehydrogenation can occur over pristine TiO2 under SBG light illumination. It is seen that the photocatalytic activity increases with temperature and the energy of the SBG photons, in agreement with the light-heat synergistic electric transition via the exponential gap states. The present research reveals a mechanism for the SBG light photocatalytic response of pristine TiO2 materials, which is important in designing highly-active visible light active photocatalysts.

10.
Materials (Basel) ; 16(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36614618

ABSTRACT

VO2-based film, as a very promising thermochromic material for smart windows, has attracted extensive attention but has not been widely applied because it is difficult to simultaneously improve in terms of both solar-modulation efficiency (ΔTsol) and visible transmittance (Tlum) when made using the magnetron-sputtering method, and it has poor durability when made using the wet chemical method. Herein, island-like ZrO2-VO2 composite films with improved thermochromic performance (ΔTsol: 12.6%, Tlum: 45.0%) were created using a simple approach combining a dual magnetron-sputtering and acid-solution procedure. The film's ΔTsol and Tlum values were increased initially and subsequently declined as the sputtering power of the ZrO2 target was raised from 30 W to 120 W. ΔTsol achieved its maximum of 12.6% at 60 W, and Tlum reached its maximum of 51.1% at 90 W. This is likely the result of the interaction of two opposing effects: Some VO2 nanocrystals in the composite film were isolated by a few ZrO2 grains, and some pores could utilize their surface-plasmon-resonance effect at high temperature to absorb some near-infrared light for an enhanced ΔTsol and Tlum. More ZrO2 grains means fewer VO2 grains in the composite film and increased film thickness, which also results in a decrease in ΔTsol and Tlum. As a result, this work may offer a facile strategy to prepare VO2-based films with high thermochromic performance and promote their application in smart windows.

11.
Materials (Basel) ; 14(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34501019

ABSTRACT

As a typical thermochromic material, VO2 coatings can be applied to smart windows by modulating the transmission of near infrared (NIR) light via phase transition. However, the inherent undesirable luminous transmittance (Tlum) and solar modulation efficiency (ΔTsol) of pure VO2 impede its practical application. In order to solve this problem, the porous VO2 based composite film was prepared by magnetron sputtering and subsequent acid solution process with Zn2V2O7 particles used as a sacrificial template to create pores, which showed excellent Tlum (72.1%) and enhanced ΔTsol (10.7%) compared with pure VO2 film. It was demonstrated that the porous structure of the film caused by acid solution process could improve the Tlum obviously and the isolated VO2 nanoparticles presented strong localized surface plasmon resonance (LSPR) effects to enhance the ΔTsol. Therefore, this method will provide a facile way to prepare VO2 based films with excellent thermochromic performance and thus promote the application of the VO2 based films in smart windows.

12.
Phys Chem Chem Phys ; 23(35): 19901-19910, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525161

ABSTRACT

Electron transfer to O2 is a universally existing process for the physiochemistry of many materials. Electron transfer to O2 is also an inevitable process for photocatalytic reactions over TiO2 and other materials. In the present research, a diffusion reflectance system was developed to measure in situ optical diffusion reflectances caused by photoinduced electrons in nano-TiO2 under a steady light illumination; in situ absorption decays can be obtained to study the electron transfer from their trapped states to O2. It is seen that the kinetics of electron transfer to O2 is persistent and dispersive; this lasts for several minutes and approximately agrees with a stretched exponential kinetics. The result implies that variable apparent energy barriers (Eis) are involved in the electron transfer. The effects of O2 amount, light intensity, and temperature are studied and the results mean the trap-filling effect should be involved in the electron transfer to O2. A Laplace transform is used to derive the Ei distributions. It is found that the Ei dispersion shape almost does not change; this indicates that the physical reason causing the Ei dispersion is the same for different experimental conditions and possibly comes from the trap-filling effect. It is shown that the slow kinetics of the electron transfer is also dependent on the slow rate for an electron transferring from a trap to O2, in additional to the trapping-filling effect. The results indicate that the photocatalytic activity can be increased through a modulation in trap distribution.

13.
Phys Chem Chem Phys ; 23(14): 8300-8308, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33875994

ABSTRACT

Modifying TiO2 with the Cu element has been shown to be useful for photocatalysis. Although it had been known that Cu species could trap electrons from TiO2, whether they can affect the kinetics of electron transfer and how this can contribute to photocatalysis still remain unknown. In the current research, Cu-TiO2 samples were firstly prepared with a hydrothermal reaction and characterized in detail. It was shown that Cu elements were doped in the TiO2 lattice in +1/0 valence states and have a minor effect on the TiO2 structure. By means of photoconductances, it is shown that the Cu dopants could catalyze the electron transfer from TiO2 to O2 by reducing the apparent activation energy (Eapp) by about 2 times. The photocatalytic experiments conducted at different temperatures showed that the Eapp of the acetone photocatalytic oxidations could be decreased by ∼2 times; this implies that the Cu dopants change the photocatalytic pathway. First-principles computation showed that the surface Cu dopants, along with the compensated oxygen vacancies, can mediate both of the electron and hole transfer. By combining other studies, we proposed that the Cu sites could act as Lewis acid and base pairs that could combine with acetone and O2 molecules under UV light illumination; this allows electron transfer to O2via the Cu sites that then react with acetone. As compared to pure TiO2 surfaces, the different chemical environment of the Cu sites leads to the decrease in the Eapp of photocatalysis.

14.
ACS Omega ; 6(7): 4534-4541, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33644561

ABSTRACT

A traditional hydrothermal method was modified to synthesize ultra-long sodium titanate nanobelts by simultaneously stirring the solution. The ultra-long sodium titanate nanobelts were converted to hydrogen titanate nanobelts through an ion exchanging way. A method was then used to prepare self-standing flexible large-area membranes; they were then subject to post-annealing at different temperatures to obtain a self-standing TiO2 nanobelt membrane with a slight decrease in flexibility. Cu-doped TiO2 membranes were prepared by ion exchanging and post-annealing in the same manner. X-ray diffractions, scanning electron microscopy, field-emission scanning electron microscopy, field-emission transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to characterize the samples. Photodegradation of methylene blue (MB) water solutions was used to evaluate the photocatalytic activity. It was seen that the pure sample presented obvious visible-light responding photocatalytic activity, possibly due to the self-sensitization of the MB molecule. The UV-induced photocatalytic activity is higher because of the photoinduced holes and electrons. It was suggested that the Cu dopant induced intra-gap states from electron traps and recombination centers, resulting in the decrease in both of the visible and UV induced photocatalysis.

15.
ACS Omega ; 5(24): 14847-14856, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596623

ABSTRACT

Although photocatalysis has been studied for many years as an attractive way to resolve energy and environmental problems, its principle still remains unclear. Some confusions and misunderstandings exist in photocatalytic studies. This research aims to elaborate some new thoughts on the fundamental principle of semiconductor photocatalysis. Starting from the basic laws of thermodynamics, we first defined the thermodynamic potential of photocatalysis. A concept, the Gibbs potential landscape, was thus then proposed to describe the kinetics of photocatalysis. Photocatalysis is therefore defined as a light-driven chemical reaction that still needs heat activation, in that light and heat play their different roles and interact with each other. Photocatalysis should feature an activation energy functioning with both light and heat. The roles of light and heat are correlative and mutually inhibit at both levels of thermodynamics and kinetics, so it is impossible for an intrinsic light-heat synergism to happen. Two criteria were further proposed to determine an intrinsic light-heat synergism in photocatalysis. Experiments were also carried out to calculate the thermodynamic potential and can agree well with the theory. Experimental results proved that there is no intrinsic light-heat synergism, in accordance with our theoretical prediction. This research clarified some misunderstandings and gained some new insights into the nature of photocatalysis; this is important for the discipline of semiconductor photocatalysis.

16.
ACS Omega ; 5(21): 11998-12004, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32548378

ABSTRACT

The catalytic reduction of p-nitrophenol (4-NP) to 4-aminopyridine (4-AP) over Au nanoparticles can be increased by light illumination. Whether this is caused by the plasmonic effect remains unclear. The present research carried out a careful examination of the effects of light illumination and temperature on the catalytic conversion of 4-NP to 4-AP over Au nanorods. It was seen that light illumination has no effect on the apparent activation energy; this indicates that the catalytic mechanism is unchanged and the activity increase cannot be attributed to the effect of hot electrons. Based on the simulation of finite-difference time domain, the theoretical analysis also showed that plasmonic heating cannot play a major role. Thermographic mapping showed that the temperature of water solutions shows an increase under light illumination. By taking this temperature increase into consideration, the light-induced increase of the 4-NP to 4-AP conversion can agree well with dark catalysis, which cannot be attributed to the plasmonic effects of the Au nanorods.

17.
Dalton Trans ; 49(11): 3519-3524, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32107507

ABSTRACT

In recent years, substantial efforts have been devoted to investigating the electrocatalytic activity of transition metal oxide catalysts, especially delafossite oxides have been proved to exhibit remarkable activity toward the oxygen evolution reaction (OER). Herein, the electrocatalytic activity and stability of CuScO2 hexagonal plates (around 3-4 µm) for the OER in alkaline solution were investigated. The micron sized CuScO2 with well-defined hexagonal plate morphology was prepared through a facile hydrothermal method. Moreover, its crystal structure, morphology, surface chemical states, thermal stability, and electrocatalytic performance were studied. The CuScO2 powder exhibits efficient catalytic activity and good long-term stability towards the OER in 1.0 M KOH. An optimal electrode of Ni foam supported CuScO2 powders needs an overpotential of 490 mV to afford a benchmark current density of 10 mA cm-2 and is able to sustain galvanostatic OER electrolysis for 18 hours with little degradation of 33 mV.

18.
J Nanosci Nanotechnol ; 18(10): 6913-6918, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29954510

ABSTRACT

Fabrication of semiconductor composites consisting of multicomponent or multiphase heterojunctions is a very effective strategy to design highly active photocatalyst systems. Here we present a facile design to fabricate novel CdS/ZnS heterostructured porous sheet-like nanocomposite based on a cation-exchanged hydrothermal procedure. Micro-structural analyses reveal that the product is a kind of heterostructured composite with porous structure and high crystallinity. The composite nanosheets exhibited enhanced visible-light photoactivity compared with pure ZnS or CdS. Among them, sample of Cd0.45Zn0.55S gave the highest degradation rate of about 99% under visible-light irradiation within 60 min when 10 mg of the sample was added into 50 mL of methyl orange in aqueous solution (10 mg/L). The enhanced photocatalytic activity was presumed to result from the direct photoinduced interfacial charge transfer (IFCT) from the valence band (VB) of ZnS to CdS.

19.
Phys Chem Chem Phys ; 19(15): 10116-10124, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28367550

ABSTRACT

Nanocrystalline (nc) semiconductor materials are important in photocatalysis. The nanoparticle (NP) topologies and electron Fermi-level (EF) gradient along the interconnected NPs affect the photocatalytic efficiency (η) of the nc-materials because of the charge carrier interparticle transport (IPT). However, the detailed physiochemical kinetic mechanism remains unclear. Based on the kinetic analysis and the numerical Monte-Carlo simulation of random walks, the statistical probability distributions pRec(t) and pit(t) for the recombination time and interfacial transfer (IT) time have been proposed in this study. The recombination lifetime (τRed) and IT lifetime (τIT) were calculated by averaging pRec(t) and pit(t). The characteristic time τe of the entire electron kinetics was defined using τRe and τIT, and η was calculated by dividing τe by τIT. The simulation results show that the pRec(t) clearly shows the IPT of electrons. Both the kinetic factors (NP spatial topologies and boundary barrier) and the thermodynamic factor (electron EF gradient) can affect the IPT. It was observed that the increase in IPT cannot lead to a monotonous increase in η although it can prohibit recombination. Whether the IPT can increase the η is dependent on ratio of the back IPT for recombination and the forward IPT for IT. The existence of an electron EF gradient from the electron generation site to the active site can increase η by promoting the forward IPT.

20.
Phys Chem Chem Phys ; 19(13): 8866-8873, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28294219

ABSTRACT

In this research, a combination of in situ photoconductivity (σ) and kinetic simulations was used to study the role of electron interfacial transfer (IT) in the gaseous photocatalysis of formic acid by mesoporous nanocrystalline TiO2. The effects of light intensity, initial formic acid concentrations, oxygen amounts, and temperature on the in situ σ and the photocatalytic courses were studied in detail. The temperature dependence of in situ σ clearly shows that the electron transfer is determined by the IT of electrons to O2 rather than by the transport. It was seen that the electron IT limits the photocatalysis by correlating with the recombination and the hole IT via the dynamic change in electron densities. The numerical simulation of in situ σ shows that the IT of electrons belongs to a thermally activated process that presents a thermal barrier of 0.5 eV. It is considered that this high thermal barrier limits the IT of electrons. It was also seen that the thermal activation of photocatalysis does not relate to that of the electron IT, although the overall photocatalysis is limited by the IT of electrons. Our finding shows that it is an effective way to increase the photocatalytic activity by reducing the thermal barrier of electron IT.

SELECTION OF CITATIONS
SEARCH DETAIL
...