Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38201817

ABSTRACT

Under a global carbon-neutralizing environment, renewable wood is a viable alternative to non-renewable resources due to its abundance and high specific strength. However, fast-growing wood is hard to be applied extensively due to low mechanical strength and poor dimensional stability and durability. In this study, epoxy-acrylic resin-modified wood was prepared by forming a functional monomer system with three monomers [glycidyl methacrylate (GMA), maleic anhydride (MAN), and polyethylene glycol-200-dimethylacrylic acid (PEGDMA)] and filling into the wood cell cavity. The results showed that in the case of an optimal monomer system of nGMA:nPEGDMA = 20:1 and an optimal MAN dosage of 6%, the conversion rate of monomers reached 98.01%, the cell cavity was evenly filled by the polymer, with the cell wall chemically bonded. Thus, a bonding strength of as high as 1.13 MPa, a bending strength of 112.6 MPa and an impact toughness of 74.85 KJ/m2 were applied to the modified wood, which presented excellent dimensional stability (720 h water absorption: 26%, and volume expansion ratio: 5.04%) and rot resistance (loss rates from white rot and brown rot: 3.05% and 0.67%). Additionally, polymer-modified wood also exhibited excellent wear resistance and heat stability. This study reports a novel approach for building new environmentally friendly wood with high strength and toughness and good structural stability and durability.

2.
Polymers (Basel) ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850165

ABSTRACT

Waterborne polyurethane coatings (WPU) are widely used in various types of coatings due to their environmental friendliness, rich gloss, and strong adhesion. However, their inferior mechanical properties and solvent resistance limit their application on the surface of wood products. In this study, graphene oxide (GO) with nanoscale size, large surface area, and abundant functional groups was incorporated into WPU by chemical grafting to improve the dispersion of GO in WPU, resulting in excellent mechanical properties and solvent resistance of WPU coatings. GO with abundant oxygen-containing functional groups and nanoscale size was prepared, and maintained good compatibility with WPU. When the GO concentration was 0.7 wt%, the tensile strength of GO-modified WPU coating film increased by 64.89%, and the abrasion resistance and pendulum hardness increased by 28.19% and 15.87%, respectively. In addition, GO also improved the solvent resistance of WPU coatings. The chemical grafting strategy employed in this study provides a feasible way to improve the dispersion of GO in WPU and provides a useful reference for the modification of waterborne wood coatings.

3.
Polymers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36559824

ABSTRACT

Water-based polyurethane paint is widely used for wood furniture by virtue of the eco-friendliness, rich gloss, and flexible tailorability of its mechanical properties. However, its low solution (water or alcohol) resistance and poor hardness and wear resistance limit its application. The emerging graphene oxide has a high specific surface area and abundant functional groups with excellent mechanical properties, endowing it with great potential to modify waterborne polyurethane as a nanofiller. In this study, graphene oxide prepared by Hummers' method is introduced in the chemosynthetic waterborne polyurethane through physical blending. The testing results demonstrate that the appropriate usage of graphene oxide at 0.1 wt% could obviously improve water absorption resistance and alcohol resistance, significantly enhancing the mechanical properties of waterborne polyurethane paint. The corresponding tensile strength, abrasion resistance, and pendulum hardness of the graphene oxide-modified paint film increase by 62.23%, 14.76%, and 12.7%, respectively, compared with the pristine paint film. Meanwhile, the composite paint film containing graphene oxide possesses superiority, including gloss, abrasion resistance, pendulum hardness, and tensile strength in contrast with the commercial paint. The use of graphene oxide to enhance the waterborne polyurethane possesses strong operability and practical value, and could provide useful reference for the modification of waterborne wood paint.

4.
Polymers (Basel) ; 14(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35458320

ABSTRACT

Fast-growing poplar wood has the bottleneck problems of inferior mechanical strength and poor dimensional stability. In this study, the wood was modified by combined treatments of pre-compression and post-vacuum-thermo modification to improve its mechanical strength and dimensional stability, simultaneously; in addition, the variation law of mechanical properties of the wood with compression ratio as well as the improvement effect of dimensional stability of the treated wood were mainly studied. The results show that the optimal temperature and time of the vacuum-thermo modification were 190 °C and 10 h, respectively. Under these conditions, the structure of pre-compressed and post-vacuum-thermally modified wood (CT wood) is gradually densified with the increase in the compression ratio, which results in the continuous enhancement of mechanical properties. Meanwhile, the anti-swelling efficiency (ASE) of the CT wood after water absorption is correspondingly better than that of the compressed wood before thermal modification, indicating that the dimensional stability of compressed wood was improved by the thermal modification. When the compression ratio was 70%, the modulus of rupture (MOR) and impact toughness of CT wood was 176 MPa and 63 KJ/m2, which was 125% and 59% higher than that of untreated wood, respectively. The ASE was also 26% higher than that of the wood with sole compression. Therefore, this method improves the mechanical strength and dimensional stability of wood simultaneously, and it provides a scientific basis for optimization of the reinforcing modification process of fast-growing wood.

5.
Molecules ; 24(17)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470628

ABSTRACT

With the enhancement of people's environmental awareness, waterborne polyurethane (PU) paint-with its advantages of low release of volatile organic compounds (VOCs), low temperature flexibility, acid and alkali resistance, excellent solvent resistance and superior weather resistance-has made its application for wood furniture favored by the industry. However, due to its lower solid content and weak intermolecular force, the mechanical properties of waterborne PU paint are normally less than those of the traditional solvent-based polyurethane paint, which has become the key bottleneck restricting its wide applications. To this end, this study explores nanocellulose derived from biomass resources by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation method to reinforce and thus improve the mechanical properties of waterborne PU paint. Two methods of adding nanocellulose to waterborne PU-chemical addition and physical blending-are explored. Results show that, compared to the physical blending method, the chemical grafting method at 0.1 wt% nanocellulose addition results in the maximum improvement of the comprehensive properties of the PU coating. With this method, the tensile strength, elongation at break, hardness and abrasion resistance of the waterborne PU paint increase by up to 58.7%, ~55%, 6.9% and 3.45%, respectively, compared to the control PU; while the glossiness and surface drying time were hardly affected. Such exploration provides an effective way for wide applications of water PU in the wood industry and nanocellulose in waterborne wood coating.


Subject(s)
Cellulose/chemistry , Coated Materials, Biocompatible/chemistry , Nanostructures/chemistry , Polyurethanes/chemistry , Wood/analysis , Cellulose/ultrastructure , Cyclic N-Oxides/chemistry , Hardness , Humans , Materials Testing , Nanostructures/ultrastructure , Oxidation-Reduction , Tensile Strength , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...