Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Lab Chip ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787694

ABSTRACT

Point of care testing (POCT) of nucleic acids holds significant importance in the realm of infectious disease prevention and control, as well as the advancement of personalized precision medicine. Nevertheless, conventional nucleic acid testing methods continue to face challenges such as prolonged detection times and dependence on extensive specialized equipment and personnel, rendering them unsuitable for point of care applications. Here, we proposed an innovative active centrifugal microfluidic system (ACMS) for automatic nucleic acid extraction, encompassing modules for active valve control and magnetic control. An on-chip centrifugal puncture valve (PV) was devised based on the elastic tolerance differences between silicone membranes and tinfoils to release pre-embedded liquid reagents on demand. Furthermore, we have utilized the returnable valve (RV) technology to accurately control the retention and release of liquids, leveraging the high elastic tolerance of the silicone membrane. By incorporating an online controllable magnetic valve, we have achieved controlled and rapid aggregation and dispersion of magnetic beads. The final chip encapsulates multiple reagents and magnetic beads necessary for nucleic acid extraction. Upon sample addition and loading into the instrument, automated on-chip sample loading and nucleic acid extraction, purification, and collection can be accomplished within 30 minutes, halving the overall operation time and even increasing the efficiency of pseudovirus extraction by three orders of magnitude. Consequently, real-time fluorescence quantitative PCR amplification has successfully detected multiple targets of the SARS-CoV-2 virus (with an impressive detection limit as low as 10 copies per µL), along with targeted sequencing analysis yielding a conformity rate of 99%.

2.
Small Methods ; : e2400454, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818744

ABSTRACT

In microbiological research, traditional methods for bacterial screening and antibiotic susceptibility testing are resource-intensive. Microfluidics offers an efficient alternative with rapid results and minimal sample consumption, but the demand for cost-effective, user-friendly platforms persists in communities and hospitals. Inspired by the Magdeburg hemispheres, the strategy adapts to local conditions, leveraging omnipresent atmospheric pressure for self-sealing of Rotation-SlipChip (RSC) equipped with a 3D circular Christmas tree-like microfluidic concentration gradient generator. This innovative approach provides an accessible and adaptable platform for microbiological research and testing in diverse settings. The RSC can avoid leakage concerns during multiple concentration gradient generation, chip-rotating, and final long-term incubation reaction (≥24 h). Furtherly, RSC subtypes adapted to different reactions can be fabricated in less than 15 min with cost less than $1, the result can be read through designated observational windows by naked-eye. Moreover, the RSC demonstrates its capability for evaluating bacterial biomarker activity, enabling the rapid assessment of ß-galactosidase concentration and enzyme activity within 30 min, and the limit of detection can be reduced by 10-fold. It also rapidly determines the minimum antibiotic inhibitory concentration and antibiotic combined medications results within 4 h. Overall, these low-cost and user-friendly RSC make them invaluable tools in determinations at previously impractical environment.

3.
Anal Chem ; 96(18): 7145-7154, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656793

ABSTRACT

Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.


Subject(s)
COVID-19 , Centrifugation , SARS-CoV-2 , Immunoassay/methods , Immunoassay/instrumentation , SARS-CoV-2/isolation & purification , Centrifugation/instrumentation , COVID-19/diagnosis , COVID-19/virology , Humans , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices
4.
Biosens Bioelectron ; 255: 116240, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38554576

ABSTRACT

Public health events caused by pathogens have imposed significant economic and societal burdens. However, conventional methods still face challenges including complex operations, the need for trained operators, and sophisticated instruments. Here, we proposed a fully integrated and automated centrifugal microfluidic chip, also termed IACMC, for point-of-care multiplexed molecular diagnostics by harnessing the advantages of active and passive valves. The IACMC incorporates multiple essential components including a pneumatic balance module for sequential release of multiple reagents, a pneumatic centrifugation-assisted module for on-demand solution release, an on-chip silicon membrane module for nucleic acid extraction, a Coriolis force-mediated fluid switching module, and an amplification module. Numerical simulation and visual validation were employed to iterate and optimize the chip's structure. Upon sample loading, the chip automatically executes the entire process of bacterial sample lysis, nucleic acid capture, elution quantification, and isothermal LAMP amplification. By optimizing crucial parameters including centrifugation speed, direction of rotation, and silicone membrane thickness, the chip achieves exceptional sensitivity (twenty-five Salmonella or forty Escherichia coli) and specificity in detecting Escherichia coli and Salmonella within 40 min. The development of IACMC will drive advancements in centrifugal microfluidics for point-of-care testing and holds potential for broader applications in precision medicine including high-throughput biochemical analysis immune diagnostics, and drug susceptibility testing.


Subject(s)
Biosensing Techniques , Mycobacterium tuberculosis , Nucleic Acids , Microfluidics , Point-of-Care Systems , Microbial Sensitivity Tests , Pathology, Molecular , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , Nucleic Acids/analysis , Escherichia coli , Lab-On-A-Chip Devices
5.
Nat Chem ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499848

ABSTRACT

Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.

6.
J Ovarian Res ; 17(1): 26, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281033

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is one of the most common gynecological tumors with high morbidity and mortality. Altered serum N-glycome has been observed in many diseases, while the association between serum protein N-glycosylation and OC progression remains unclear, particularly for the onset of carcinogenesis from benign neoplasms to cancer. METHODS: Herein, a mass spectrometry based high-throughput technique was applied to characterize serum N-glycome profile in individuals with healthy controls, benign neoplasms and different stages of OC. To elucidate the alterations of glycan features in OC progression, an orthogonal strategy with lectin-based ELISA was performed. RESULTS: It was observed that the initiation and development of OC was associated with increased high-mannosylationand agalactosylation, concurrently with decreased total sialylation of serum, each of which gained at least moderately accurate merits. The most important individual N-glycans in each glycan group was H7N2, H3N5 and H5N4S2F1, respectively. Notably, serum N-glycome could be used to accurately discriminate OC patients from benign cohorts, with a comparable or even higher diagnostic score compared to CA125 and HE4. Furthermore, bioinformatics analysis based discriminative model verified the diagnostic performance of serum N-glycome for OC in two independent sets. CONCLUSIONS: These findings demonstrated the great potential of serum N-glycome for OC diagnosis and precancerous lesion prediction, paving a new way for OC screening and monitoring.


Subject(s)
Ovarian Neoplasms , Precancerous Conditions , Humans , Female , Influenza A Virus, H7N2 Subtype , Biomarkers, Tumor , Ovarian Neoplasms/diagnosis , Polysaccharides/analysis , Precancerous Conditions/diagnosis
7.
Analyst ; 149(4): 1250-1261, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38225883

ABSTRACT

Exosomal microRNAs (miRNAs) play a pivotal role in intercellular communication, regulating gene expression in target cells, and hold significant promise as cancer biomarkers for early detection and screening. However, achieving precise and viable detection of exosomal miRNAs remains a challenge. This paper proposes an all-in-one detection strategy for breast cancer-derived exosomal miRNA-21 on a pen-based paper chip (PPC). The PPC is constructed using a modified automatic pen and lateral flow assay (LFA), which results in a cost-effective fabrication process. The user only needs to add the sample and trigger the top of the self-contained PPC after a period of time to complete the entire detection process. To enhance the sensitivity of exosomal miRNA testing, an enzyme-free catalyzed hairpin assembly (CHA) is further introduced, enabling highly sensitive detection of miRNA-21 with a limit of detection (LOD) of 25 fmol. Additionally, the detection of miRNAs in differentially-expressed cells and clinical samples has also been successfully achieved with high specificity. Overall, the proposed PPC provides an effective tool for detecting early cancer, monitoring diseases, and establishing point of care testing (POCT).


Subject(s)
Biosensing Techniques , Breast Neoplasms , Exosomes , MicroRNAs , Humans , Female , MicroRNAs/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Biosensing Techniques/methods , Limit of Detection , Exosomes/genetics
8.
Anal Chim Acta ; 1287: 342033, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182334

ABSTRACT

The abuse of antibiotics has become a global public safety issue, leading to the development of antimicrobial resistance (AMR). The development of antimicrobial susceptibility testing (AST) is crucial in reducing the growth of AMR. However, traditional AST methods are time-consuming (e.g., 24-72 h), labor-intensive, and costly. Here, we propose a controlled-diffusion centrifugal microfluidic platform (CCM) for rapid AST to obtain highly precise minimum inhibitory concentration (MIC) values. Antibiotic concentration gradients are generated by controlled moving and diffusing of antibiotic and buffer solution along the main microchannel within 3 min. The solution and bacterial suspension are then injected into the outermost reaction chamber by simple centrifugation. The CCM successfully determined the MIC for three commonly used antibiotics in clinical settings within 4-9 h. To further enhance practicality, reduce costs, and meet point-of-care testing demands, we have developed an integrated mobile detection platform for automated MIC value acquisition. The proposed CCM is a simple, low-cost, and portable method for rapid AST with broad clinical and in vitro applications.


Subject(s)
Anti-Bacterial Agents , Microfluidics , Anti-Bacterial Agents/pharmacology , Centrifugation , Diffusion , Microbial Sensitivity Tests
9.
Proc Natl Acad Sci U S A ; 121(4): e2315401121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232280

ABSTRACT

Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.


Subject(s)
G-Quadruplexes , Kinetics , Physics
10.
Talanta ; 269: 125398, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37979508

ABSTRACT

Due to the ever-increasing challenge of emerging and reemerging infections on global health, the development of POCT tools has been propelled. However, conventional point-of-care testing methods suffer from several limitations, including cumbersome operation, long detection times, and low accuracy, which hamper their widespread application. Compared to traditional disease diagnostic equipment, mobile health platforms offer several advantages, including portability, ease of operation, and automated analysis of detection results through recognition algorithms. Consequently, they hold great promise for the future. Here, we developed a smartphone-based centrifugal mHealth platform implementing daisy-shaped quick response chip for hematocrit measurement. The centrifugal microfluidic chip is combined with a smartphone through a back-clip-on mobile phone adapter whose control circuit is designed with low power consumption to enable the platform to operate without requiring a high-power source that is inconvenient to carry, thereby achieving the goal of portability. Concurrently, we designed a quick response chip featuring a unique hollow daisy structure that is in line with the properties of hematocrit detection. The distinctive configuration of the chip enables adequate centrifugal force to be supplied for hematocrit detection. Additionally, our customized quick response code recognition algorithm is able to recognize this chip, facilitating non-experts in performing hematocrit intelligent recognition with their smartphones.


Subject(s)
Smartphone , Telemedicine , Hematocrit , Equipment Design , Microfluidics
11.
Small ; : e2310206, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085133

ABSTRACT

Point-of-care testing (POCT) is experiencing a groundbreaking transformation with microfluidic chips, which offer precise fluid control and manipulation at the microscale. Nevertheless, chip design or operation for existing platforms is rather cumbersome, with some even heavily depending on external drivers or devices, impeding their broader utilization. This study develops a unique programmable gravity self-driven microfluidic chip (PGSMC) capable of simultaneous multi-reagent sequential release, multi-target analysis, and multi-chip operation. All necessary reagents are introduced in a single step, and the process is initiated simply by flipping the PGSMC vertically, eliminating the need for additional steps or devices. Additionally, it demonstrates successful immunoassays in less than 60 min for antinuclear antibodies testing, compared to more than 120 min by traditional methods. Assessment using 25 clinically diagnosed cases showcases remarkable sensitivity (96%), specificity (100%), and accuracy (99%). These outcomes underscored its potential as a promising platform for POCT with high accuracy, speed, and reliability, highlighting its capability for automated fluid control.

12.
Micromachines (Basel) ; 14(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630112

ABSTRACT

Associative learning is a critical survival trait that promotes behavioral plasticity in response to changing environments. Chemosensation and mechanosensation are important sensory modalities that enable animals to gather information about their internal state and external environment. However, there is a limited amount of research on these two modalities. In this paper, a novel PDMS-agar hybrid microfluidic device is proposed for training and analyzing chemical-mechanical associative learning behavior in the nematode Caenorhabditis elegans. The microfluidic device consisted of a bottom agar gel layer and an upper PDMS layer. A chemical concentration gradient was generated on the agar gel layer, and the PDMS layer served to mimic mechanical stimuli. Based on this platform, C. elegans can perform chemical-mechanical associative learning behavior after training. Our findings indicated that the aversive component of training is the primary driver of the observed associative learning behavior. In addition, the results indicated that the neurotransmitter octopamine is involved in regulating this associative learning behavior via the SER-6 receptor. Thus, the microfluidic device provides a highly efficient platform for studying the associative learning behavior of C. elegans, and it may be applied in mutant screening and drug testing.

13.
Cell Chem Biol ; 30(11): 1436-1452.e10, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37611590

ABSTRACT

Wnt/ß-catenin signaling is a conserved pathway crucially governing development, homeostasis, and oncogenesis. Discoveries of its regulators hold great values in both basic and translational research. Through screening, we identified a deubiquitinase, USP10, as a critical modulator of ß-catenin. Mechanistically, USP10 binds to key scaffold Axin1 via conserved motifs and stabilizes Axin1 through K48-linked deubiquitination. Surprisingly, USP10 physically tethers Axin1 and ß-catenin and promotes the phase separation for ß-catenin suppression regardless of the enzymatic activity. Function-wise, USP10 enzymatic activity preferably regulates embryonic development and both the enzymatic activity and physical function jointly control intestinal homeostasis by antagonizing ß-catenin. In colorectal cancer, USP10 substantially represses cancer growth mainly through physical promotion of phase separation and correlates with Wnt/ß-catenin magnitude clinically. Collectively, we discovered USP10 functioning in multiple biological processes against ß-catenin and unearthed the enzyme-dependent and -independent "dual-regulating" mechanism. These two functions of USP10 work in parallel and are context dependent.


Subject(s)
Wnt Signaling Pathway , beta Catenin , beta Catenin/metabolism , Deubiquitinating Enzymes/metabolism
14.
Anal Chem ; 95(33): 12521-12531, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37556853

ABSTRACT

There remains an unmet need for a fully integrated microfluidic platform that can automatically perform multistep and multireagent immunoassays. Here, we proposed a novel online dual-active valve-based centrifugal microfluidic chip, termed DAVM, for fully automatic point-of-care immunoassay. Practically, the puncture valve, one of the dual active valves, is capable of achieving precise, on-demand, sequential release of prestored reagents, while the other valve-reversible active valve enables controlled retention and drainage of the reaction solutions. Thereby, our technology mitigates the challenges of hydrophilic/hydrophobic modifications and unstable valve control performance commonly observed in passive valve controls. As a proof of concept, the indirect enzymatic immunoblotting technique was employed on DAVM for fully automated immunological analysis of eight targets, yielding outcomes within an hour. Furthermore, we conducted a comparative analysis of 28 clinical samples with autoimmune diseases. According to 224 clinical data, the sample testing concordance rate between DAVM and the traditional instrument was 82%, with a target compliance rate of 97%. Therefore, our DAVM system has powerful potential for fully automated immunoassays.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Point-of-Care Systems , Lab-On-A-Chip Devices , Immunoassay/methods , Immunoblotting
15.
Analyst ; 148(16): 3870-3875, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37439439

ABSTRACT

Angiogenesis is one of the most essential developmental processes and plays a key role in organogenesis and tumorigenesis in which epithelial cells proliferate and migrate, thus resulting in sprouting and extension of the existing vasculature. The study of angiogenesis in vivo is limited by difficulties related to imaging of the fine structure of vascular sprouting within non-transparent bulk tissue. Thus, many model systems have been proposed in recent years. However, to meet the urgent need for high-throughput studies and screening, further improvements are still required, particularly in terms of scaling-up. In this study, we combined microchip fabrication with the culture of three-dimensional (3D) spheroids, thus providing a platform for 3D multilayer angiogenesis-on-a-chip. Using this platform, we investigated the precise effects of vascular endothelial growth factor (VEGF) on angiogenesis. In comparison with two-dimensional (2D) angiogenesis assays, our 3D angiogenesis platform demonstrated superior sprouting and provided proof of concept that our 3D biomimetic angiogenesis-on-a-chip could serve as a powerful tool for pro- or anti-angiogenesis candidate drug screening.


Subject(s)
Spheroids, Cellular , Vascular Endothelial Growth Factor A , Biomimetics , Epithelial Cells
16.
Anal Bioanal Chem ; 415(22): 5311-5322, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392212

ABSTRACT

Droplet microfluidics is a rapidly advancing area of microfluidic technology, which offers numerous advantages for cell analysis, such as isolation and accumulation of signals, by confining cells within droplets. However, controlling cell numbers in droplets is challenging due to the uncertainty of random encapsulation which result in many empty droplets. Therefore, more precise control techniques are needed to achieve efficient encapsulation of cells within droplets. Here, an innovative microfluidic droplet manipulation platform had been developed, which employed positive pressure as a stable and controllable driving force for manipulating fluid within chips. The air cylinder, electro-pneumatics proportional valve, and the microfluidic chip were connected through a capillary, which enabled the formation of a fluid wall by creating a difference in hydrodynamic resistance between two fluid streams at the channel junction. Lowering the pressure of the driving oil phase eliminates hydrodynamic resistance and breaks the fluid wall. Regulating the duration of the fluid wall breakage controls the volume of the introduced fluid. Several important droplet microfluidic manipulations were demonstrated on this microfluidic platform, such as sorting of cells/droplets, sorting of droplets co-encapsulated cells and hydrogels, and active generation of droplets encapsulated with cells in a responsive manner. The simple, on-demand microfluidic platform was featured with high stability, good controllability, and compatibility with other droplet microfluidic technologies.

17.
Nat Commun ; 14(1): 1341, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906581

ABSTRACT

The frequent outbreak of global infectious diseases has prompted the development of rapid and effective diagnostic tools for the early screening of potential patients in point-of-care testing scenarios. With advances in mobile computing power and microfluidic technology, the smartphone-based mobile health platform has drawn significant attention from researchers developing point-of-care testing devices that integrate microfluidic optical detection with artificial intelligence analysis. In this article, we summarize recent progress in these mobile health platforms, including the aspects of microfluidic chips, imaging modalities, supporting components, and the development of software algorithms. We document the application of mobile health platforms in terms of the detection objects, including molecules, viruses, cells, and parasites. Finally, we discuss the prospects for future development of mobile health platforms.


Subject(s)
Microfluidics , Smartphone , Humans , Artificial Intelligence , Point-of-Care Testing , Software
18.
Anal Chem ; 95(14): 6145-6155, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36996249

ABSTRACT

Low-cost, rapid, and accurate acquisition of minimum inhibitory concentrations (MICs) is key to limiting the development of antimicrobial resistance (AMR). Until now, conventional antibiotic susceptibility testing (AST) methods are typically time-consuming, high-cost, and labor-intensive, making them difficult to accomplish this task. Herein, an electricity-free, portable, and robust handyfuge microfluidic chip was developed for on-site AST, termed handyfuge-AST. With simply handheld centrifugation, the bacterial-antibiotic mixtures with accurate antibiotic concentration gradients could be generated in less than 5 min. The accurate MIC values of single antibiotics (including ampicillin, kanamycin, and chloramphenicol) or their combinations against Escherichia coli could be obtained within 5 h. To further meet the growing demands of point-of-care testing, we upgraded our handyfuge-AST with a pH-based colorimetric strategy, enabling naked eye recognition or intelligent recognition with a homemade mobile app. Through a comparative study of 60 clinical data (10 clinical samples corresponding to six commonly used antibiotics), the accurate MICs by handyfuge-AST with 100% categorical agreements were achieved compared to clinical standard methods (area under curves, AUCs = 1.00). The handyfuge-AST could be used as a low-cost, portable, and robust point-of-care device to rapidly obtain accurate MIC values, which significantly limit the progress of AMR.


Subject(s)
Anti-Bacterial Agents , Microfluidics , Microfluidics/methods , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Escherichia coli , Ampicillin
19.
Talanta ; 258: 124466, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36963148

ABSTRACT

This paper proposed a hand-powered centrifugal micropipette-tip strategy, termed HCM, for all-in-one immunoassay combined with a distance-based readout for portable quantitative detection of SARS-CoV-2. The target SARS-CoV-2 virus antigen triggers the binding of multiple monoclonal antibody-coated red latex nanobeads, forming larger complexes. Following incubation and centrifugation, the formed aggregated complexes settle at the bottom of the tip, while free red nanobeads remain suspended in the solution. The HCM enables sensitive (1 ng/mL) and reliable quantification of SARS-CoV-2 within 25 min. With the advantages of free washing, free fabrication, free instrument, and without the optical device, the proposed low-cost and easy-to-use HCM immunoassay shows great potential for quantitative POC diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Immunoassay
20.
Biosens Bioelectron ; 227: 115152, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36805272

ABSTRACT

Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.


Subject(s)
Biosensing Techniques , COVID-19 , Extracellular Vesicles , Nanopores , Humans , Fatty Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...