Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.871
Filter
1.
Sci Total Environ ; : 173702, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830416

ABSTRACT

The structural variances of adsorbents play a crucial role in determining the number of effective adsorption sites and pretreatment performance. However, there is still a gap in comprehending the impact of different carbon structural adsorbents on membrane fouling. Therefore, this study aimed to compare the efficacy of granular activated carbon (GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) in mitigating membrane fouling during municipal sewage reclamation using an aerobic granular sludge membrane bioreactor (AGMBR). The results demonstrated that the utilization of PAC significantly enhanced the normalized flux and reduced fouling resistance in comparison to GAC and ACF systems. PAC effectively adsorbed low and medium-molecular-weight pollutants present in raw sewage, resulting in an increase in average particle size and a decrease in foulant content on the membrane surface. The Hermia model indicated that adsorption pretreatment minimized standard blocking while promoting the formation of a sparse and porous cake layer. Moreover, according to the extended Derjaguin-Landau-Verwey-Overbeek theory, PAC has been demonstrated as the optimal antifouling system owing to its enhanced repulsion between membrane-foulant and foulant-foulant interactions. Correlation analysis revealed that the exceptional antifouling performance of the PAC system was due to its high removal rates of chemical oxygen demand (~78 %) and suspended solids (~97 %). This research offers valuable insights into the mitigation of membrane fouling through the utilization of adsorbents featuring diverse carbon structures.

2.
Front Pharmacol ; 15: 1385261, 2024.
Article in English | MEDLINE | ID: mdl-38831886

ABSTRACT

Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.

3.
Article in English | MEDLINE | ID: mdl-38833208

ABSTRACT

Genetic mosaicism, characterized by multiple genotypes within an individual, is considered an obstacle to CRISPR/Cas9 genome editing in animal models. Despite the various strategies for minimizing mosaic mutations, no definitive methods exist to eliminate them. This study aimed to enhance gene editing efficiency in porcine zygotes using CRISPR/Cas9, which targets specific genes through centrifugation and zona pellucida removal before electroporation. Centrifugation at 2000 × g did not adversely affect blastocyst formation rates in zygotes electroporated with gRNA targeting the GGTA1 gene; instead, it led to increased total and monoallelic mutation rates compared with control zygotes without centrifugation. However, the groups had no significant differences in biallelic mutation rates. In zygotes electroporated with gRNA targeting the CMAH gene, centrifugation treatments exceeding 1000 × g significantly increased both biallelic mutation rates and mutation efficiency. The combination of centrifugation and zona pellucida removal did not have a detrimental effect on blastocyst formation rates. It led to a higher rate of double biallelic mutations in embryos targeting both GGTA1 and CMAH compared to embryos without centrifugation treatment. In summary, our results demonstrate that pre-electroporation treatments, including centrifugation and zona pellucida removal, positively influenced the reduction of mosaic mutations, with the effectiveness of centrifugation depending on the specific gRNA used.

4.
Phys Chem Chem Phys ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833213

ABSTRACT

Non-volatile magnetic random-access memories have proposed the need for spin channel switching. However, this presents a challenge as each spin channel reacts differently to the external field. Tellurene is a semiconductor with a tunable bandgap, excellent stability, and high carrier concentration, but its lack of magnetic properties has hindered its application in spintronics. In this work, the influence of an external field on transition metal (TM)-doped ß-tellurene is systematically analysed from first principles. First, the active-learning moment-tensor-potential (MTP) is used to verify the thermal stability of the V-doped system with the MTP proving to be 900 times faster than the traditional method. Subsequently, under biaxial strain ranging from -2% to 10%, the V-doped system undergoes a gradual transition from a magnetic semiconductor to a spin-gapless semiconductor, and further to a half-metal and magnetic metal. The band structure can be maintained under an electric field. By examining the magnetic anisotropy energy, the lattice changes profoundly impact the electromagnetic properties, particularly with the TMs being sensitive to strain. Moreover, the band structure is reflected in the spin resolution current of the magnetic tunnel junction. This work investigates the response of doped ß-Te to external fields, revealing its potential applications in spintronics.

5.
Heliyon ; 10(7): e28440, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689964

ABSTRACT

Introduction: Mitochondrial fission process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein implicated in the development and progression of various tumors, particularly lung squamous cell carcinoma (LUSC). This study aims to provide a more theoretical basis for the treatment of LUSC. Methods: Through bioinformatics analysis, MTFP1 was identified as a novel target gene of HIF1A. MTFP1 expression in LUSC was examined using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Proteomics Data Commons (PDC) databases. The Kaplan-Meier plotter (KM plotter) database was utilized to evaluate its correlation with patient survival. Western blot and chromatin immunoprecipitation (ChIP) assays were employed to confirm the regulatory relationship between MTFP1 and HIF1A. Additionally, cell proliferation, colony formation, and migration assays were conducted to investigate the mechanism by which MTFP1 enhances LUSC cell proliferation and metastasis. Results: Our findings revealed that MTFP1 overexpression correlated with poor prognosis in LUSC patients(P < 0.05). Moreover, MTFP1 was closely associated with hypoxia and glycolysis in LUSC (R = 0.203; P < 0.001, R = 0.391; P < 0.001). HIF1A was identified as a positive regulator of MTFP1. Functional enrichment analysis demonstrated that MTFP1 played a role in controlling LUSC cell proliferation. Cell proliferation, colony formation, and migration assays indicated that MTFP1 promoted LUSC cell proliferation and metastasis by activating the glycolytic pathway (P < 0.05). Conclusions: This study establishes MTFP1 as a novel HIF1A target gene that promotes LUSC growth by activating the glycolytic pathway. Investigating MTFP1 may contribute to the development of effective therapies for LUSC patients, particularly those lacking targeted oncogene therapies.

6.
Front Pharmacol ; 15: 1348280, 2024.
Article in English | MEDLINE | ID: mdl-38698813

ABSTRACT

Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.

7.
Mater Today Bio ; 26: 101064, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698883

ABSTRACT

Autologous nerve transplantation (ANT) is currently considered the gold standard for treating long-distance peripheral nerve defects. However, several challenges associated with ANT, such as limited availability of donors, donor site injury, mismatched nerve diameters, and local neuroma formation, remain unresolved. To address these issues comprehensively, we have developed porous poly(lactic-co-glycolic acid) (PLGA) electrospinning fiber nerve guide conduits (NGCs) that are optimized in terms of alignment and conductive coating to facilitate peripheral nerve regeneration (PNR) under electrical stimulation (ES). The physicochemical and biological properties of aligned porous PLGA fibers and poly(3,4-ethylenedioxythiophene):polystyrene sodium sulfonate (PEDOT:PSS) coatings were characterized through assessments of electrical conductivity, surface morphology, mechanical properties, hydrophilicity, and cell proliferation. Material degradation experiments demonstrated the biocompatibility in vivo of electrospinning fiber films with conductive coatings. The conductive NGCs combined with ES effectively facilitated nerve regeneration. The designed porous aligned NGCs with conductive coatings exhibited suitable physicochemical properties and excellent biocompatibility, thereby significantly enhancing PNR when combined with ES. This combination of porous aligned NGCs with conductive coatings and ES holds great promise for applications in the field of PNR.

8.
Chem Sci ; 15(17): 6285-6313, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699256

ABSTRACT

Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.

9.
Chem Sci ; 15(17): 6552-6561, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699257

ABSTRACT

Mucin-related tumor-associated carbohydrate antigens (TACAs) are important and interesting targets for cancer vaccine therapy. However, efficient access to a library of mucin-related TACAs remains a challenging task. One of the key issues is the challenging construction of α-GalNAc linkages. Here, we report highly stereoselective α-glycosylation with GalN3N-phenyl trifluoroacetimidate donors, which features excellent yields, outstanding stereoselectivities, broad substrate scope and mild reaction conditions. This method is successfully applied to highly stereoselective synthesis of GalN3-α-O-Ser, which served as the common intermediate for collective synthesis of a wide range of TACAs including TN antigen, STN antigen, 2,6 STF antigen, 2,3 STF antigen, glycophorin and cores 1-8 mucin-type O-glycans. In particular, the rationale for this highly stereoselective α-glycosylation is provided for the first time using DFT calculations and mechanistic studies, highlighting the crucial roles of reagent combinations (TMSI and Ph3PO) and the H-bonding directing effect of the N3 group.

10.
J Dent Educ ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722295

ABSTRACT

OBJECTIVE: The integration of curriculum is an important approach for enhancing medical education and facilitating interdisciplinary connections among students. This study aimed to develop a new morphological integrated teaching mode for undergraduate stomatology education by combining stomatological pathology and radiology courses with instructional media. METHODS: In total, 63 undergraduates were included in this study and divided into three groups: traditional (Group T; the control group) and two experimental groups: KoPa WiFi EDU (Group K), and KoPa WiFi EDU-cone beam computed tomography (CBCT) (Group K-C). All participants attended a 2-h lecture on periapical cysts and completed the first theoretical test. Subsequently, they underwent a 4-h experimental training session on the pathology and radiology of periapical cysts using different teaching methods. Following the training, participants completed the second theoretical test and underwent the first image-reading skill evaluation. After a 3-month period, participants completed the third theoretical test and underwent the second image-reading skill evaluation. The effectiveness of the teaching methods was assessed by analyzing the differences in theoretical test and experimental skill evaluation scores. RESULTS: There were no significant differences in the first theoretical outcomes among three groups (p > 0.05). However, the second theoretical scores, the first objective evaluation scores, and the first subjective evaluation scores were significantly higher in the integrated teaching mode (3D teaching mode with the KoPa WiFi EDU and CBCT: 89.29 ± 4.55, 81.00 ± 8.15, and 61.57 ± 5.52, respectively; 2D teaching mode with the KoPa WiFi EDU system: 80.43 ± 3.41, 73.00 ± 8.01, and 55.67 ± 5.66, respectively) than in the traditional teaching mode (72.57 ± 3.84, 69.38 ± 4.91, and 48.67 ± 5.54, respectively) (p < 0.05). Moreover, the long-term teaching effect of the integrated mode was better than that of the traditional mode (p < 0.05). CONCLUSIONS: The morphology-based integrated teaching mode combining pathology and radiology aroused student enthusiasm for learning, and resulted in enhanced learning outcomes in dental experimental education.

11.
Article in English | MEDLINE | ID: mdl-38727409

ABSTRACT

BACKGROUND: Vascular tumorous thrombosis is a crucial pathological feature of malignant tumors that is closely associated with lymph node metastasis and is considered a form of tumor micrometastasis. Two downregulated genes, catenin alpha 3 (CTNNA3) and FERM and PDZ domain-containing 4 (FRMPD4), were selected by analyzing the differential expression of vascular tumorous thrombus in colon adenocarcinoma and paracancerous tissues. Further investigation revealed their potential role in the development of vascular tumorous thrombosis in colon adenocarcinomas. MATERIALS AND METHODS: Candidate genes for vascular tumorous thrombosis in colon adenocarcinoma were screened using GSE127069, and pan-cancer verification and immune infiltration analysis were performed. The relationship between gene expression and vascular tumorous thrombosis was analyzed based on the level of gene mutations using cBioPortal. Finally, the collected clinical samples were used to verify expression. RESULTS: CTNNA3 and FRMPD4 were expressed at low levels in the vascular tumorous thrombosis of colon adenocarcinoma and positively correlated with microsatellite instability. They are also closely related to the immune microenvironment and the infiltration of immune cell subtypes. Based on gene mutation analysis, gene deletion is suggested to be related to vascular invasion indicators. Finally, protein and messenger ribonucleic acid (mRNA) expression of CTNNA3 and FRMPD4 were downregulated in the vascular tumorous thrombosis samples of colon adenocarcinoma compared to normal glands from paracancerous tissues. CONCLUSION: Our study suggests that CTNNA3 and FRMPD4 could be promising biomarkers for vascular tumorous thrombosis in colon adenocarcinoma, potentially enabling the identification of micrometastases in this type of cancer. These findings suggest a novel strategy for the detection and management of colon adenocarcinomas.

13.
Chem Sci ; 15(18): 6891-6896, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725498

ABSTRACT

Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 µm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.

14.
Plant Physiol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717740

ABSTRACT

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

15.
Chem Commun (Camb) ; 60(44): 5707-5710, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38738645

ABSTRACT

A tandem palladium-catalyzed Sonogashira coupling, propargyl-allenyl isomerization, and [2+2] cycloaddition sequence between electron-deficient haloarenes and 1,8-diynylic ethers is developed. The reaction shows good functional tolerance and proceeds under mild conditions to provide a new profile of benzooxepane-fused cyclobutene derivatives in moderate to high yields with high selectivity. The reaction mechanism is validated both by experimental studies and DFT calculations.

16.
J Am Chem Soc ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753624

ABSTRACT

The efficacy of photodynamic therapy is hindered by the hypoxic environment in tumors and limited light penetration depth. The singlet oxygen battery (SOB) has emerged as a promising solution, enabling oxygen- and light-independent 1O2 release. However, conventional SOB systems typically exhibit an "always-ON" 1O2 release, leading to potential 1O2 leakage before and after treatment. This not only compromises therapeutic outcomes but also raises substantial biosafety concerns. In this work, we introduce a programmable singlet oxygen battery, engineered to address all the issues discussed above. The concept is illustrated through the development of a tumor-microenvironment-responsive pyridone-pyridine switch, PyAce, which exists in two tautomeric forms: PyAce-0 (pyridine) and PyAce (pyridone) with different 1O2 storage half-lives. In its native state, PyAce remains in the pyridone form, capable of storing 1O2 (t1/2 = 18.5 h). Upon reaching the tumor microenvironment, PyAce is switched to the pyridine form, facilitating rapid and thorough 1O2 release (t1/2 = 16 min), followed by quenched 1O2 release post-therapy. This mechanism ensures suppressed 1O2 production pre- and post-therapy with selective and rapid 1O2 release at the tumor site, maximizing therapeutic efficacy while minimizing side effects. The achieved "OFF-ON-OFF" 1O2 therapy showed high spatiotemporal selectivity and was independent of the oxygen supply and light illumination.

17.
J Rheumatol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749557

ABSTRACT

OBJECTIVE: Although previous studies have explored the association of drinking with gout risk, the dose-response relationship was uncertain and the evidence between subtypes of alcoholic beverages and gout risk was limited. METHODS: The weekly alcoholic beverage consumption in the United Kingdom Biobank (UKB) was collected and calculated. The Cox regression model was applied to assess the impact of alcohol drinking and its subtypes on gout risk by calculating the hazard ratio (HR) and 95% confidence interval (CI). Besides, the restricted cubic splines were used to estimate the dose-response relationship between alcoholic drinking and gout risk. To evaluate the robustness, we performed subgroup analysis across various demographic characteristics. RESULTS: During a mean follow-up period of 11.70 years, a total of 5,728 newly incident gout cases were diagnosed among 331,865 participants. We found that light alcohol drinking was linked to a slight decrease in gout incidence among females (HR, 0.78; 95% CI, 0.65 to 0.94, P=0.01), whereas it showed no significant association in males. Moreover, the dose-response relationship showed that light red wine and fortified wine could reduce the gout risk, while beer, champagne plus white wine and spirits promoted the gout risk at any dose. CONCLUSION: Our study suggested a J-shaped dose-response relationship of drinking with gout risk in females rather than males. For specific alcoholic beverages, light consumption of red wine and fortified wine was associated with reduced gout risk. These findings offer new insights into the roles of alcoholic beverages in gout, while further validation is warranted.

18.
Article in English | MEDLINE | ID: mdl-38749783

ABSTRACT

BACKGROUND AND AIMS: The Triglyceride-Glucose Index (TyG) has been proposed as a predictor to mortality, yet its association remains incompletely understood for individuals with or without chronic kidney disease (CKD). METHODS AND RESULTS: We analyzed data from the National Health and Nutrition Examination Survey spanning the years 1999-2018. CKD was defined as eGFR level <60 ml/min/1.73 m2 or urinary albumin creatinine ratio ≥30 mg/g. We employed the Cox proportional-hazards model to evaluate the incident risk of mortality associated with TyG among both non-CKD and CKD individuals. In the current analysis, 19,426 individuals were without CKD, while 2975 individuals had CKD. The overall mean TyG was 8.65, with significant difference between non-CKD and CKD individuals (8.60 vs 8.95, P < 0.001). The TyG index exhibited linear associations with incident cardiovascular disease (CVD) mortality and all-cause mortality among non-CKD and CKD individuals, respectively. A per-unit increase in the TyG index was significantly associated with CVD mortality for both non-CKD (HR = 1.24, 95%CI = 1.09-1.41) and CKD participants (HR = 1.19, 95%CI = 1.04-1.36), with no significant difference in the associations between the two groups (P = 0.091). For both non-CKD and CKD participants, TyG index was significantly associated with CVD mortality and all-cause mortality among those with age <65, but not for those with age ≥65. CONCLUSIONS: Our findings underscore the TyG index's as a valuable predictive tool for assessing the risk of all-cause and CVD mortality in both individuals with and without CKD.

20.
Cancer Manag Res ; 16: 455-463, 2024.
Article in English | MEDLINE | ID: mdl-38774493

ABSTRACT

Objective: The study aimed to investigate the significantly different imaging characteristics of musculoskeletal dedifferentiated liposarcoma (DDLP) and well differentiated liposarcoma (WDLP) on MRI, which in turn could guide puncture biopsy. Materials and Methods: This study included 14 patients with DDLP and 16 patients with WDLP, all of whom were confirmed by histopathological examination. The MRI manifestations of these two pathologies were retrospectively reviewed and compared. Furthermore, a step-by-step procedure regarding preoperative puncture biopsy of fatty masses that are suspicious for WD/DD was designed. Results: Fatty signals can be found in almost all WDs, with a greater proportion of non-fatty areas in DD compared to WD, and it is reasonable to consider WD more likely when the non-fatty areas of the tumor are <25% (p < 0.05), while it is reasonable to consider DD more likely when the non-fatty areas of the tumor are >50% (p < 0.05), and the MRI signals in DD are more complex, inhomogeneous (p < 0.01), usually showed significant enhancement (p < 0.01), and the margins of the tumor were usually indistinct (p < 0.01); and imaging features such as tumor size, vascularity, necrosis, and peritumoral edema did not serve as distinguishing features between the two (p > 0.05). Conclusion: DD has a greater proportion of non-fatty components, with more complex and inhomogeneous MRI signals, and typically shows significant enhancement, with usually indistinct margins of the tumor, in which the inhomogeneous manifestations are associated with the histological components. The possibility of DD should be considered in fatty tumors with non-fatty areas > 25%, for which puncture biopsy is necessary, while simultaneous puncture of low, moderate, high-signal areas within the non-fatty area could improve the accuracy of preoperative puncture pathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...