Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Int J Ophthalmol ; 17(3): 528-536, 2024.
Article in English | MEDLINE | ID: mdl-38721515

ABSTRACT

AIM: To evaluate the effectiveness and safety of early lens extraction during pars plana vitrectomy (PPV) for proliferative diabetic retinopathy (PDR) compared to those of PPV with subsequent cataract surgery. METHODS: This multicenter randomized controlled trial was conducted in three Chinese hospitals on patients with PDR, aged >45y, with mild cataracts. The participants were randomly assigned to the combined (PPV combined with simultaneously cataract surgery, i.e., phacovitrectomy) or subsequent (PPV with subsequent cataract surgery 6mo later) group and followed up for 12mo. The primary outcome was the change in best-corrected visual acuity (BCVA) from baseline to 6mo, and the secondary outcomes included complication rates and medical expenses. RESULTS: In total, 129 patients with PDR were recruited and equally randomized (66 and 63 in the combined and subsequent groups respectively). The change in BCVA in the combined group [mean, 36.90 letters; 95% confidence interval (CI), 30.35-43.45] was significantly better (adjusted difference, 16.43; 95%CI, 8.77-24.08; P<0.001) than in the subsequent group (mean, 22.40 letters; 95%CI, 15.55-29.24) 6mo after the PPV, with no significant difference between the two groups at 12mo. The overall surgical risk of two sequential surgeries was significantly higher than that of the combined surgery for neovascular glaucoma (17.65% vs 3.77%, P=0.005). No significant differences were found in the photocoagulation spots, surgical time, and economic expenses between two groups. In the subsequent group, the duration of work incapacity (22.54±9.11d) was significantly longer (P<0.001) than that of the combined group (12.44±6.48d). CONCLUSION: PDR patients aged over 45y with mild cataract can also benefit from early lens extraction during PPV with gratifying effectiveness, safety and convenience, compared to sequential surgeries.

2.
Br J Ophthalmol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777388

ABSTRACT

AIMS: To investigate the effect of preretinal tractional structures (PTS) and posterior scleral structures (PSS) on myopic traction maculopathy (MTM) progression. METHODS: This retrospective cohort study included 185 fellow highly myopic eyes of 185 participants who underwent surgery for MTM. PTS included epiretinal membrane, incomplete posterior vitreous detachment and their combination. PSS included posterior staphyloma and dome-shaped macula (DSM). The MTM stage was graded according to the Myopic Traction Maculopathy Staging System. Optical coherence tomography was used to identify MTM progression, defined as an upgrade of MTM. The Kaplan-Meier method with log-rank test was used to assess MTM progression over the 3-year follow-up period. Risk factors for progression were identified using Cox regression analysis. RESULTS: MTM progression was observed in 48 (25.9%) eyes. Three-year progression-free survival (PFS) rates for eyes with PTS, staphyloma and DSM were 53.7%, 58.2% and 90.7%, respectively. Eyes with PTS and staphyloma exhibited lower 3-year PFS rates than those without PTS or staphyloma (P log-rank test =0.002 and <0.001), while eyes with DSM had a higher 3-year PFS rate than eyes without DSM (P log-rank test=0.01). Multivariate Cox regression analysis showed that PTS (HR, 3.23; p<0.001) and staphyloma (HR, 7.91; p<0.001) were associated with MTM progression, whereas DSM (HR, 0.23; p=0.046) was a protective factor. CONCLUSION: Both PTS and PSS play a critical role in the progression of MTM. Addressing these factors can aid in the management of MTM.

3.
Cytokine ; 179: 156640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735245

ABSTRACT

INTRODUCTION: To investigate the levels of angiogenesis and inflammatory cytokines in individuals with myopic choroidal neovascularization (mCNV) and the changes in these factors following intravitreal anti-VEGF injection. METHODS: Aqueous humor samples were gathered from eyes with mCNV, those with single macular bleeding (SMB) without mCNV in highly myopic eyes, and those with age-related cataracts. Using a multiplex bead immunoassay, we analyzed 28 angiogenesis and inflammatory factors in the aqueous humor. Furthermore, clinical data were documented for correlation analysis. RESULTS: In this study, the levels of vascular endothelial growth factor A (VEGF-A), interleukin 8 (IL-8), and fibroblast growth factors 1 (FGF-1) were significantly elevated in mCNV compared to SMB eyes (p < 0.05). Their odds ratios for mCNV occurrence were 1.05, 3.45, and 2.64, respectively. Hepatocyte growth factor (HGF) and VEGF-C were notably higher in mCNV than in cataract patients (p < 0.05), and VEGF-C correlated to the degree of myopic atrophic maculopathy (p = 0.024). Axial length exhibited a negative correlation with VEGF-A and positive correlations with VEGF-C, HGF, and MCP-1 (p < 0.01). Following anti-VEGF treatment, a reduction in VEGF-A, endothelin-1, and FGF-2 was noted in mCNV patients (p < 0.05), but MCP-1 levels increased. CONCLUSION: Our findings highlight the predominant role of angiogenesis and inflammation factors in mCNV pathogenesis. VEGF-C's correlation with axial length and atrophy suggests its involvement in the process of myopic atrophic maculopathy.


Subject(s)
Choroidal Neovascularization , Myopia , Vascular Endothelial Growth Factor A , Humans , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Male , Female , Middle Aged , Aged , Vascular Endothelial Growth Factor A/metabolism , Myopia/drug therapy , Myopia/pathology , Myopia/metabolism , Myopia/complications , Intravitreal Injections , Inflammation/metabolism , Inflammation/pathology , Aqueous Humor/metabolism , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Cytokines/metabolism , Adult , Angiogenesis
4.
Anal Methods ; 16(18): 2878-2887, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38639924

ABSTRACT

Shikimic acid (SA) is one of the most effective drugs against the A (H1N1) virus and has high medicinal value. Additionally, it has the ability to generate non-toxic herbicides and antimicrobial medications. The extraction from plants has proven to be the main route of production of SA with economic benefits and environmental efficiency. Therefore, it is necessary to perform purification of SA from these herbal medicines before quantifying it. In this study, researchers employed a boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) as highly effective solid phase extraction (SPE) adsorbents for the isolation and purification of SA. 3-Fluoro-4-formylphenylboronic acid functionalized silica nanoparticles were used as supporting materials for immobilizing SA. Poly(2-anilinoethanol) with a higher hydrophilic domain can be used as an effective imprinting coating. The prepared SA-imprinted silica nanoparticles exhibited several significant results, such as good specificity, high binding capacity (39.06 ± 2.24 mg g-1), moderate binding constant (6.61 × 10-4 M-1), fast kinetics (8 min) and low binding pH (pH 5.0) toward SA. The replication of SA-imprinted silica nanoparticles was deemed satisfactory. The SA-imprinted silica nanoparticles could be still reused after seven adsorption-desorption cycles, which indicated high chemical stability. In addition, the recoveries of the proposed method for SA at three spiked level analysis in star aniseed and meadow cranesbill were 96.2% to 109.0% and 91.6% to 103.5%, respectively. The SA-imprinted silica nanoparticles that have been prepared are capable of identifying the target SA in real herbal medicines. Our approach makes sample pre-preparation simple, fast, selective and efficient.


Subject(s)
Boronic Acids , Molecular Imprinting , Nanoparticles , Shikimic Acid , Silicon Dioxide , Solid Phase Extraction , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Molecular Imprinting/methods , Shikimic Acid/chemistry , Shikimic Acid/isolation & purification , Boronic Acids/chemistry , Solid Phase Extraction/methods , Molecularly Imprinted Polymers/chemistry , Adsorption , Herbal Medicine/methods
5.
Int J Biol Macromol ; 267(Pt 1): 131196, 2024 May.
Article in English | MEDLINE | ID: mdl-38574915

ABSTRACT

In this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation ß-carotene to retard its degradation during processing and storage. CNCs were prepared by H2SO4 hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI. HIPPEs encapsulated ß-carotene (ßc-HIPPEs) were stabilized by PPI/ACNCs complexes and showed excellent inverted storage stability. Moreover, ßc-HIPPEs exhibited typical shear thinning behavior investigated by rheological properties analysis. During thermal treatment, ultraviolet radiation and oxidation, the retentions of ß-carotene encapsulated in HIPPEs were improved significantly. This research holds promise in expanding Pickering emulsions stabilized by proteins-polysaccharide particles to delivery systems for hydrophobic bioactive compounds.


Subject(s)
Arachis , Cellulose , Emulsions , Nanoparticles , Plant Proteins , beta Carotene , beta Carotene/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Cellulose/chemistry , Arachis/chemistry , Plant Proteins/chemistry , Rheology , Particle Size , Oxidation-Reduction
6.
Int Endod J ; 57(6): 682-699, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403990

ABSTRACT

AIM: This study aimed to determine the effects of iRoot BP Plus on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and inflammation-mediated bone resorption in vivo and investigated the underlying molecular mechanisms. METHODOLOGY: CCK-8 was performed to test cell viability in RANKL-induced RAW 264.7 cells and BMDMs in response to iRoot BP Plus. The effect of iRoot BP Plus on osteoclastogenesis was determined using TRAP staining and phalloidin staining, respectively. Pit formation assay was conducted to measure osteoclast resorptive capacity. Western blot and qPCR were performed to examine osteoclast-related proteins and gene expression, respectively. Western blot was also used to investigate the signalling pathways involved. For in vivo experiments, an LPS-induced mouse calvarial bone resorption model was established to analyse the effect of iRoot BP Plus on bone resorption (n = 6 per group). At 7 days, mouse calvaria were collected and prepared for histological analysis. RESULTS: We identified that iRoot BP Plus extracts significantly attenuated RANKL-induced osteoclastogenesis, reduced sealing zone formation, restrained osteolytic capacity and decreased osteoclast-specific gene expression (p < .01). Mechanistically, iRoot BP Plus extracts reduced TRAF6 via proteasomal degradation, then suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), blocked the nuclear translocation of c-Fos and diminished nuclear factor-κB (NF-κB) p65 and NFATc1 accumulation. Consistent with the in vitro results, iRoot BP Plus extracts attenuated osteoclast activity thus protecting against inflammatory bone resorption in vivo (p < .05), which was accompanied by a suppression of TRAF6, c-Fos, NFATc1 and cathepsin K expression. CONCLUSION: These findings provide valuable insights into the signalling mechanisms underlying nanoparticulate bioceramic putty-mediated bone homeostasis.


Subject(s)
Bone Resorption , Osteoclasts , Osteogenesis , RANK Ligand , Signal Transduction , TNF Receptor-Associated Factor 6 , Animals , Mice , TNF Receptor-Associated Factor 6/metabolism , Signal Transduction/drug effects , Bone Resorption/metabolism , RAW 264.7 Cells , Osteogenesis/drug effects , Osteoclasts/drug effects , RANK Ligand/metabolism , Nanoparticles , Ceramics/pharmacology , Inflammation/metabolism , Cell Survival/drug effects
7.
Heliyon ; 10(1): e23438, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173498

ABSTRACT

Background: In some patients especially those AMA negative, the diagnosis may be a challenge requiring liver biopsy. This study determined whether autotaxin, a secreted lysophospholipase D encoded by the exonucleotide pyrophosphatase phosphodiesterase 2 gene, can be used as a serum biomarker for primary biliary cholangitis. Methods: Plasma samples were collected from 103 patients with PBC and 74 healthy controls. autotaxin levels were determined by Enzyme-linked immunosorbent assay, and its predictive value for diagnosing primary biliary cholangitis was analysed. The relationship between autotaxin and the clinical data was also evaluated. Results: Autotaxin levels in patients with primary biliary cholangitis were significantly higher than those in healthy control (median: 60.7 ng/ml vs. 32.6 ng/ml, P < 0.001). The cut-off value of autotaxin in patients with primary biliary cholangitis was 38.5 ng/ml, and the positivity rate was 33.9 %, calculated twice. The sensitivity, specificity, positive predictive value, and negative predictive value were 54.3 %, 93.1 %, 84.4 %, and 74.8 %, respectively, and the area under the curve was 0.73. Autotaxin level positively correlated with immunoglobulin M level (r = -0.22, P < 0.05) and Ludwig's classification (r = 0.76, P < 0.01) in patients with primary biliary cholangitis. The positivity rate of autotaxin (50.0 %) was higher than that of anti-sp100 (16.7 %) and anti-gp210 (11.1 %) antibodies in anti-mitochondrial antibody -negative patients with primary biliary cholangitis. Conclusions: Autotaxin may be an effective noninvasive biomarker used in diagnosis, prognosis of primary biliary cholangitis, particularly in anti-mitochondrial antibody -negative patients.

8.
Retina ; 44(4): 601-609, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38064675

ABSTRACT

PURPOSE: To investigate the pace of visual acuity loss in myopic maculoschisis eyes with or without macular detachment and identify associated risk factors. METHODS: One thousand three hundred and thirty-four eyes of 991 patients with high myopia were reviewed. A new myopic traction maculopathy staging system classified four retinal stages and three foveal stages. To the myopic traction maculopathy eyes with normal fovea, maculoschisis with and without macular detachment was defined as Stage 3a and Stages 1a, 2a respectively. RESULTS: One hundred and ten (8.25%) eyes with maculoschisis were included, with a follow-up of 24.00 ± 17.47 months. Of them, 84 (76.36%) were Stages 1a, 2a, and 26 (23.64%) were Stage 3a. The visual acuity loss per year during the follow-up period was similar between eyes with Stages 1a, 2a and Stage 3a (3.13 ± 12.21 vs. 3.41 ± 18.42 letters, P = 0.930). Multivariate analyses revealed that vitreomacular interface factors were significantly associated with visual acuity loss during the follow-up, no matter in Stages 1a, 2a or Stage 3a ( P = 0.039 and P = 0.038, respectively). In the Stages 1a, 2a group, the percentage of eyes that lost at least 10 letters at the final visit compared with the baseline visual acuity was higher in eyes with vitreomacular interface factors than in those without vitreomacular interface factors (13 eyes, 50.00% vs. 14 eyes, 24.14%, P = 0.019). CONCLUSION: No differences were found in visual acuity loss pace between Stages 1a, 2a and Stage 3a. Surgical intervention or at least more intensive follow-up should be considered for Stages 1a, 2a eyes with vitreomacular interface factors, to promote a more favorable visual outcome.


Subject(s)
Macular Degeneration , Myopia, Degenerative , Humans , Retrospective Studies , Longitudinal Studies , Myopia, Degenerative/complications , Traction , Tomography, Optical Coherence , Vision Disorders , Macular Degeneration/complications
9.
Anal Bioanal Chem ; 416(1): 265-276, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957328

ABSTRACT

As a central neurotransmitter, DA (dopamine) plays a vital part in human metabolism, and its accurate detection is of great significance in disease diagnosis. In this work, we used Cu/Co bimetallic metal-organic frameworks (MOFs) as templates and gold nanoparticles (AuNPs) to construct novel nanocomposite coral-like CuCo2O4@AuNPs with strong peroxidase activity and electrochemical response. The coral-like CuCo2O4@AuNPs showed excellent peroxidase activity, and the Km value was as low as 0.358 mM. In the presence of H2O2, the colorless substrate 3,3',5,5', -tetramethylbenzidine (TMB) can be catalytically oxidized into a blue product. Simultaneously, coral-like CuCo2O4@AuNPs, as an electroactive substance, possess strong electrocatalytic activity, which enhances the electron-transfer rate and promotes excellent current response. In the presence of DA, coral-like CuCo2O4@AuNPs can catalyze the oxidation of DA to dopaquinone, which further enhances the electrochemical signal. In addition, DA captures hydroxyl radicals and inhibits the oxidation of TMB, resulting in an obvious color change (blue turns colorless) and realizing colorimetric detection with the naked eye. On this basis, we successfully established a dual-mode colorimetric/electrochemical sensor using coral-like CuCo2O4@AuNP nanocomposites as a dual-signal probe. Combining colorimetric and electrochemical detection, the sensor achieved a wide linear range (0-1 mM) and a low detection limit (0.07 µM) for DA concentration. It was also successfully used for the detection of DA in human serum and urine with good results. In summary, this work provides an intuitive, economical, sensitive, and promising platform for DA detection.


Subject(s)
Anthozoa , Metal Nanoparticles , Animals , Humans , Dopamine , Gold/chemistry , Colorimetry/methods , Metal Nanoparticles/chemistry , Hydrogen Peroxide , Limit of Detection , Peroxidases
11.
12.
ACS Appl Mater Interfaces ; 15(50): 58429-58436, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38079626

ABSTRACT

The construction of an artificial protective layer is an effective method to solve the issues, such as uncontrolled dendrite growth and an unstable solid electrolyte interphase, at the K metal anode. This study proposes a new dynamic evolution strategy that integrates the advantages of previous in situ and ex situ fabrication processes. A multifunctional protective layer enriched with K-Ge alloy is prepared on the K metal electrode by simple surface modification and in situ reduction via an electrochemical process. The protective layer has good potassiophilicity, mechanical flexibility, and high ionic conductivity, which can inhibit dendrite growth and reduce side reactions. The protected K electrode with a protective layer exhibits dendrite-free K plating/striping behavior, and the symmetric cell can run stably for over 1000 h at 1 mA cm-2 and 1 mAh cm-2. Notably, full cells based on this electrode also present excellent rate and cycling performance compared to those of the bare K electrode. This peculiar strategy will open a new avenue for metal anode protection and can be extended to other high-energy battery systems.

13.
Toxics ; 11(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38133427

ABSTRACT

PM2.5 exposure leads to a variety of respiratory diseases, including pulmonary fibrosis, metastatic lung cancer, etc. Exposure to PM2.5 results in the alteration of epigenetic modification. M6A RNA methylation is an essential epigenetic modification that regulates gene expression at the post-transcriptional level. Our previous study found that PM2.5 exposure up-regulated m6A RNA methylation and TGF-ß expression level in the lung, but the mechanisms and pathways of PM2.5 regulation of m6A RNA methylation are still unclear. Moreover, a previous study reported that the TGF-ß signal pathway could regulate m6A RNA methylation. Based on this evidence, we investigate the role of the TGF-ß signaling pathway in PM2.5-induced m6A RNA methylation with the A549 cell line. Our results showed that PM2.5 could induce upregulation of m6A RNA methylation, accompanied by increased expression of TGF-ß, Smad3, methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14). Furthermore, these alterations induced by PM2.5 exposure could be reversed by treatment with TGF-ß inhibitor. Therefore, we speculated that the TGF-ß signal pathway plays an indispensable role in regulating m6A RNA methylation after PM2.5 exposure. Our study demonstrates that PM2.5 exposure influences m6A RNA methylation by inducing the alteration of the TGF-ß signal pathway, which could be an essential mechanism for lung-related diseases induced by PM2.5 exposure.

14.
Sensors (Basel) ; 23(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38005417

ABSTRACT

The development of effective methods for dopamine detection is critical. In this study, a homogeneous colorimetric strategy for the detection of dopamine based on a copper sulfide and Prussian blue/platinum (CuS@PB/Pt) composite was developed. A rose-like CuS@PB/Pt composite was synthesized for the first time, and it was discovered that when hydrogen peroxide was present, the 3,3',5,5'-tetramethylbenzidine (TMB) changed from colorless into blue-oxidized TMB. The CuS@PB/Pt composite was characterized with a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and an X-ray photoelectron spectrometer (XPS). Moreover, the catalytic activity of the CuS@PB/Pt composite was inhibited by the binding of dopamine to the composite. The color change of TMB can be evaluated by the UV spectrum and a portable smartphone detection device. The developed colorimetric sensor can be used to quantitatively analyze dopamine between 1 and 60 µM with a detection limit of 0.28 µM. Furthermore, the sensor showed good long-term stability and good performance in human serum samples. Compared with other reported methods, this strategy can be performed rapidly (16 min) and has the advantage of smartphone visual detection. The portable smartphone detection device is portable and user-friendly, providing convenient colorimetric analysis for serum. This colorimetric strategy also has considerable potential for the development of in vitro diagnosis methods in combination with other test strips.


Subject(s)
Colorimetry , Dopamine , Humans , Colorimetry/methods , Ferrocyanides , Hydrogen Peroxide/chemistry
15.
Anal Methods ; 15(45): 6159-6164, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37955623

ABSTRACT

A novel homogeneous label-free electrochemical aptamer sensor for the detection of progesterone was prepared by combining a well-designed omega (Ω)-like DNA (Ω-DNA) nanostructure, with an isothermal cycling amplification strategy based on the highly efficient exonuclease III (Exo III). The omega-like (Ω) DNA is composed of two oligonucleotide strands: DNA1 and DNA2. The Pro aptamer triggers a chain displacement reaction of Ω-DNA nanostructures, forms a new double-stranded DNA structure (aptamer precursor-DNA2), and releases DNA1. Then, Exo III selectively cleaves the DNA duplex and releases the Pro aptamer to participate in a new displacement reaction. Meanwhile, the released DNA1 strands gain access to the strongly bound hemin, forming a hemin/G-quadruplex (DNAzyme). In the presence of hydrogen peroxide (H2O2), differential pulse voltammetry (DPV) was used to detect the current signal from the oxidation of o-phenylenediamine (OPD) to aminoazobenzene (DAP) catalyzed by DNAzyme. However, the amount of released DNA1 from the Ω-DNA nanostructures is reduced in the presence of the target Pro, and the DPV signal declines because of the small amount of DNAzyme formed. The developed electrochemical aptasensor has a wide dynamic linear relationship in the range of 1 pg mL-1 to 10 ng mL-1 under optimal conditions. Its detection limit is down to 0.3 pg mL-1, providing a potential platform for a sensitive Pro assay among electrochemical assays.


Subject(s)
DNA, Catalytic , Nanostructures , DNA, Catalytic/chemistry , Progesterone , Hemin , Hydrogen Peroxide , DNA/chemistry
16.
JAMA Ophthalmol ; 141(8): 768-774, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37440241

ABSTRACT

IMPORTANCE: Ocular deformation in pathologic myopia can affect the entire globe. However, few studies have investigated the equatorial pattern of ocular shape. In addition, the correlation between equatorial and posterior morphology needs to be further explored. OBJECTIVE: To assess global ocular deformation in pathologic myopia. DESIGN, SETTING, AND PARTICIPANTS: This hospital-based, cross-sectional study included 180 pathologic myopic eyes with atrophic maculopathy grading C2 (diffuse chorioretinal atrophy) or more from 180 participants who underwent comprehensive ophthalmic examination, including high-resolution 3-dimensional magnetic resonance imaging. In addition, 10 nonpathologic myopic eyes of 10 participants were set as the control group. Main Outcomes and Measures: According to the cross-sectional view of equator, equatorial shape was classified as round, rectangular, pyriform (noncircular and more protruded in 1 direction), vertical-elliptical, or horizontal-elliptical; according to the nasal and inferior views, the posterior shape was categorized as spheroidal, conical, bulb-shaped, ellipsoidal, multidistorted, and barrel-shaped. Equatorial circularity and ocular sphericity were used to quantitatively assess the morphological variability of the equatorial and posterior regions, respectively. The association between ocular morphology and ocular parameters and myopic maculopathy was also investigated. Results: The mean (SD) age of 180 participants with pathologic myopia was 55.14 (10.74) years, 127 were female (70.6%), and the mean (SD) axial length of studied eyes was 30.22 (2.25) mm. The predominant equatorial shape was pyriform (66 eyes [36.7%]), followed by round (45 eyes [25.0%]). The predominant posterior shape was bulb-shaped (97 eyes [52.2%]), followed by multidistorted (46 eyes [24.7%]). Equatorial circularity and equatorial shapes were correlated (r = -0.469; 95% CI, -0.584 to -0.346; P < .001) and ocular sphericity was correlated with posterior shapes (r = -0.533; 95% CI, -0.627 to -0.427; P < .001). In eyes with a vertical-elliptical equator, equatorial circularity and ocular sphericity were positively linearly correlated (R2 = 0.246; 95% CI, 0.050-0.496; P = .002) and the prevalence of inferior staphyloma was higher (27.8%; P = .04). Eyes with a horizontal-elliptical equator have the most horizontally oriented axis of corneal flat keratometry (median, 43.55 [interquartile range, 43.84] degrees; P = .01) and tended to present with multidistorted posterior shape (21.7%; P = .04). Conclusions and Relevance: These findings suggest ocular deformation is common in pathologic myopia and can affect the entire eye, including the equatorial and posterior regions. The morphological classification may enhance the understanding of the diverse patterns of ocular shape in pathologic myopia.


Subject(s)
Macular Degeneration , Myopia, Degenerative , Retinal Diseases , Humans , Female , Middle Aged , Male , Cross-Sectional Studies , Myopia, Degenerative/diagnosis , Eye/pathology , Retinal Diseases/diagnosis , Retinal Diseases/etiology , Retinal Diseases/pathology , Magnetic Resonance Imaging/methods , Vision Disorders/diagnosis
17.
Article in English | MEDLINE | ID: mdl-37368171

ABSTRACT

The nonaqueous catalysis of lipases is significant for synthesis of high pure esters, but they usually behave low catalytic activity due to denaturation and aggregation of enzyme protein in organic phases. To improve the nonaqueous catalysis, the inexpensive copper phthalocyanine was taken as a new carrier on which Pseudomonas cepacia lipase was immobilized by physical absorption, and used for synthesis of hexyl acetate, an important flavor, via transesterification of hexanol and vinyl acetate. Results showed that the desired loading was 10-mg lipase immobilized on 10-mg copper phthalocyanine powder. When the immobilized lipase was employed in the reaction system consisted of 1.5-mL hexanol and 1.5-mL vinyl acetate at 37°C and 160 rpm, the conversion was fivefolds of that catalyzed by native lipase after 1 h, and reached 99.0% after 8 h. In six times of 8-h reuses, the immobilized lipase behaved an activity attenuation rate 1.22% h-1, lower than 1.77% h-1 of native lipase, which meant that the immobilized lipase was more stable. Even at the room temperature and the static state without shaking or stirring, the immobilized lipase still brought conversion 42.8% after 10 h and the native lipase gave 20.1%. Obviously, the immobilized lipase is an available biocatalyst in organic phase and has great potential in food industry.

18.
Chemistry ; 29(40): e202300821, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37156723

ABSTRACT

Lithium-sulfur batteries are promising candidates for next-generation energy storage devices due to their outstanding theoretical energy density. However, they suffer from low sulfur utilization and poor cyclability, greatly limiting their practical implementation. Herein, we adopted a phosphate-functionalized zirconium metal-organic framework (Zr-MOF) as a sulfur host. With their porous structure, remarkable electrochemical stability, and synthetic versatility, Zr-MOFs present great potential in preventing soluble polysulfides from leaching. Phosphate groups were introduced to the framework post-synthetically since they have shown a strong affinity towards lithium polysulfides and an ability to facilitate Li ion transport. The successful incorporation of phosphate in MOF-808 was demonstrated by a series of techniques including infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy, and X-ray pair distribution function analysis. When employed in batteries, phosphate-functionalized Zr-MOF (MOF-808-PO4) exhibits significantly enhanced sulfur utilization and ion diffusion compared to the parent framework, leading to higher capacity and rate capability. The improved capacity retention and inhibited self-discharge rate also demonstrate effective polysulfide encapsulation utilizing MOF-808-PO4. Furthermore, we explored their potential towards high-density batteries by examining the cycling performance at various sulfur loadings. Our approach to correlate structure with function using hybrid inorganic-organic materials offers new chemical design strategies for advancing battery materials.

19.
Talanta ; 260: 124629, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37149937

ABSTRACT

In this study, we developed a simultaneous readout of pressure and temperature dual-signals platform based on the second near-infrared (NIR II) light response-based polydopamine (PDA)-functionalized-AuPt nanoparticles (NPs)@CuS nanosheets (PDA/AuPt@CuS NS) composite. Due to the excellent NIR photothermal performance of PDA/AuPt@CuS NS, it contribute to the decomposition of H2O2 and NH4HCO3 to generate gases (including O2, CO2, and NH3) can be promoted, which can amplify the pressure signals in a sealed container. A sandwich mode is formed between Fe3O4 NPs and PDA/AuPt@CuS NS based on the dual-aptamer when target pathogenic bacteria is present. And, it is possible to convert the molecular recognition signals between the dual-aptamers into amplified pressures and temperatures, which can be read out by a portable pressure meter and smartphones simultaneously. It may offer the possibility for quantitative POCT analysis of Pathogenic Bacteria. Moreover, because of the high photothermal efficiency of this method, the developed dual-mode method can achieve that following the detection of bacteria and killing them immediately. As a result, secondary contamination is eliminated and bacterial transmission is avoided. The developed dual-signal sensing platform is also inexpensive, simple to operate and rapidly, indicating that it can be used for food safety analysis, clinical applications, and environmental monitoring.


Subject(s)
Hydrogen Peroxide , Nanoparticles , Temperature , Polymers
20.
Int J Biol Macromol ; 242(Pt 2): 124879, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37192711

ABSTRACT

The development of Pickering emulsions which are applicable to the food industry still remains challenges due to the limited availability for biocompatible, edible and natural emulsifiers. The purpose of this study was to extract cellulose nanocrystals from litchi peels (LP-CNCs), and evaluate their emulsifying properties. The results showed that the LP-CNCs were needle-like and they possessed high crystallinity (72.34 %) and aspect ratio. When the concentrations of LP-CNCs were >0.7 wt% or the contents of oil were no >0.5, stable Pickering emulsions were obtained. The microstructures of emulsions confirmed that LP-CNCs formed dense interfacial layers on the surface of oil droplets, which functioned as barriers to prevent aggregation and flocculation among droplets. Rheological results showed that the emulsions exhibited typical shear thinning behavior. The elastic of emulsions was dominant, and their gel strength could be enhanced by regulating the contents of emulsifiers or oil. Additionally, the Pickering emulsions stabilized by LP-CNCs showed extremely high pH, ionic strength, and temperature tolerance. This strategy provides an innovative alternative to tackle the dilemma of preparing highly stable Pickering emulsions using natural particles in food products.


Subject(s)
Litchi , Nanoparticles , Cellulose/chemistry , Emulsions/chemistry , Fruit , Emulsifying Agents , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...