Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 429: 128314, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35236021

ABSTRACT

A simple first order approximation was derived to model sorption/desorption kinetics of hazardous compounds in batch experiments based on a coupled film and intraparticle diffusion model. The solution is accurate enough to replace infinite series expansions needed in analytical solution for intraparticle diffusion and it accounts for the mass transfer shift from diffusion in the external aqueous boundary layer to the intraparticle pore space. With increasing distribution coefficient (Kd) and intraparticle particle porosity (ε) or decreasing Sherwood number (Sh) this mass transfer shift from film diffusion to intraparticle pore diffusion is delayed. The simple first order approximation equation allows analyses of mass transfer resistances and calculation of characteristic times which is relevant for the planning of batch experiments. The proposed solution is verified by a semi-analytical solution in Laplace space for fractional mass uptakes in the solid phase at equilibrium ranging from 50% to 91%, representing scenarios typically encountered in batch experiments.

2.
Materials (Basel) ; 14(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443230

ABSTRACT

Initial conditions (pre-equilibrium or after the first flooding of the column), mass transfer mechanisms and sample composition (heterogeneity) have a strong impact on leaching of less and strongly sorbing compounds in column percolation tests. Mechanistic models as used in this study provide the necessary insight to understand the complexity of column leaching tests especially when heterogeneous samples are concerned. By means of numerical experiments, we illustrate the initial concentration distribution inside the column after the first flooding and how this impacts leaching concentrations. Steep concentration gradients close to the outlet of the column have to be expected for small distribution coefficients (Kd<1 L kg-1) and longitudinal dispersion leads to smaller initial concentrations than expected under equilibrium conditions. In order to elucidate the impact of different mass transfer mechanisms, film diffusion across an external aqueous boundary layer (first order kinetics, FD) and intraparticle pore diffusion (IPD) are considered. The results show that IPD results in slow desorption kinetics due to retarded transport within the tortuous intragranular pores. Non-linear sorption has not much of an effect if compared to Kd values calculated for the appropriate concentration range (e.g., the initial equilibrium concentration). Sample heterogeneity in terms of grain size and different fractions of sorptive particles in the sample have a strong impact on leaching curves. A small fraction (<1%) of strongly sorbing particles (high Kd) carrying the contaminant may lead to very slow desorption rates (because of less surface area)-especially if mass release is limited by IPD-and thus non-equilibrium. In contrast, mixtures of less sorbing fine material ("labile" contamination with low Kd), with a small fraction of coarse particles carrying the contaminant leads to leaching close to or at equilibrium showing a step-wise concentration decline in the column effluent.

3.
J Contam Hydrol ; 241: 103812, 2021 08.
Article in English | MEDLINE | ID: mdl-34245996

ABSTRACT

PFAS contaminated compost materials have been applied over the last few decades to agricultural fields in Germany, resulting in large-scale diffuse PFAS plumes. The leaching behavior of PFAS from the first two identified contaminated agricultural sites in Germany were investigated, one at Brilon-Scharfenberg, North Rhine-Westphalia Site (BS-NRW), and the other at Rastatt/Mannheim, Baden-Württemberg. The specific objectives of this study were to assess the longevity of the PFAS agricultural sources and compare standardized column percolation tests to long-term leaching of PFAS from contaminated sites. The advection-dispersion model (ADM) was used to compare the leaching behavior of PFOA and PFOS from standardized column percolation tests and long-term field leaching data from the BS-NRW site. Column leaching tests conducted with PFOS and PFOA contaminated soil simulated the initial rapid decline but did not predict the long-term behavior (tailing) observed at the field site over 12 years. Trend analyses of the PFAS field data from the BS-NRW showed that concentrations had stabilized and that individual PFAS exhibited distinct seasonal fluctuations; the latter is likely due to the ongoing transformation of precursors and a seasonal influence on production rates of mobile PFAS. Mass balances conducted at both sites indicate that complete removal of these compounds will likely take years to decades to occur, which is expected from the results of the column leaching tests.


Subject(s)
Fluorocarbons , Soil Pollutants , Environmental Pollution , Fluorocarbons/analysis , Germany , Soil , Soil Pollutants/analysis
4.
Prev Vet Med ; 193: 105399, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34118647

ABSTRACT

Cardiomegaly is the main imaging finding for canine heart diseases. There are many advances in the field of medical diagnosing based on imaging with deep learning for human being. However there are also increasing realization of the potential of using deep learning in veterinary medicine. We reported a clinically applicable assisted platform for diagnosing the canine cardiomegaly with deep learning. VHS (vertebral heart score) is a measuring method used for the heart size of a dog. The concrete value of VHS is calculated with the relative position of 16 key points detected by the system, and this result is then combined with VHS reference range of all dog breeds to assist in the evaluation of the canine cardiomegaly. We adopted HRNet (high resolution network) to detect 16 key points (12 and four key points located on vertebra and heart respectively) in 2274 lateral X-ray images (training and validation datasets) of dogs, the model was then used to detect the key points in external testing dataset (396 images), the AP (average performance) for key point detection reach 86.4 %. Then we applied an additional post processing procedure to correct the output of HRNets so that the AP reaches 90.9 %. This result signifies that this system can effectively assist the evaluation of canine cardiomegaly in a real clinical scenario.


Subject(s)
Cardiomegaly/veterinary , Deep Learning , Dog Diseases , Animals , Cardiomegaly/diagnostic imaging , Dog Diseases/diagnostic imaging , Dogs , Heart , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...