Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 417: 110705, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38640815

ABSTRACT

The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.


Subject(s)
Bread , Caseins , Fagopyrum , Fermentation , Fagopyrum/chemistry , Bread/microbiology , Caseins/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/growth & development , Hydrogen-Ion Concentration , Bacteria/metabolism , Bacteria/growth & development , Fermented Foods/microbiology
2.
Talanta ; 274: 125930, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537346

ABSTRACT

Salmonella typhimurium, as a major foodborne pathogen, poses a serious threat to public health safety worldwide. Here, we present a colorimetric biosensor based on aptamer recognition-induced multi-DNA release and peroxidase-mimicking three-way junction DNA-silver/platinum bimetallic nanoclusters (3WJ/DNA-Ag/PtNCs) for the detection of S. typhimurium. In this method, S. typhimurium specifically binds to the aptamer and releases multiple cDNAs to form the three-way junction DNA structure and synthesize silver/platinum bimetallic nanoclusters, which induces signaling changes. Interestingly and importantly, the use of 3WJ/DNA as the template for synthesizing Ag/PtNCs gives the method an extremely low background signal. Under the optimal conditions, the constructed biosensor had a linear response range of 2.6 × 102-2.6 × 106 CFU/mL and a detection limit of 2.6 × 102 CFU/mL for the detection of S. typhimurium. In addition, the proposed method can effectively detect S. typhimurium in milk.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Colorimetry , Metal Nanoparticles , Platinum , Salmonella typhimurium , Silver , Salmonella typhimurium/isolation & purification , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Colorimetry/methods , Platinum/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Milk/microbiology , Milk/chemistry , Limit of Detection , DNA/chemistry , Animals , Peroxidase/chemistry , Peroxidase/metabolism
3.
Food Chem ; 443: 138510, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38281416

ABSTRACT

ß-casein is the second most abundant form of casein in milk. Changes in amino acid sequence at specific positions in the primary structure of ß-casein in milk will produce gene mutations that affect the physicochemical properties of dairy products and the hydrolysis site of digestive enzymes. The screening method of ß-casein allele frequency detection in dairy products also has attracted the extensive attention of scientists and farmers. The A1 and A2 ß-casein is the two usual mutation types, distinguished by histidine and proline at position 67 in the peptide chain. This paper summarizes the effects of A1 and A2 ß-casein on the physicochemical properties of dairy products and evaluates the effects on human health, and the genotyping methods were also concluded. Impressively, this review presents possible future opportunities and challenges for the promising field of A2 ß-casein, providing a valuable reference for the development of the functional dairy market.


Subject(s)
Caseins , Milk , Humans , Animals , Cattle/genetics , Caseins/metabolism , Milk/chemistry , Mutation
4.
Front Microbiol ; 14: 1292741, 2023.
Article in English | MEDLINE | ID: mdl-38075922

ABSTRACT

To investigate how casein hydrolysate affected the physicochemical properties and microbiological diversity of the glutinous rice dough (natural fermentation and yeast fermentation), we analyzed its fermentation properties, carbohydrate, protein degradation, texture, and bacterial composition. According to the findings, casein hydrolysate increased the total LAB number, as well as organic acid content, in naturally fermented and yeast fermented glutinous rice dough by 3.59 and 8.19%, respectively, and reduced the fermentation time by at least 2 h. Meanwhile, casein hydrolysate enhanced the content of reducing sugars by 4.46 and 13.53% and increased protease activity by 29.9 and 27.7%. In addition, casein hydrolysate accelerated protein breakdown and regulated the hardness of the dough to improve the texture. Casein hydrolysate enriched the bacterial richness and diversity of dough. After adding casein hydrolysate, it promoted the growth of Pediococcus, Enterococcus, Lactobacillus, and Streptococcus. According to the Spearman correlation analysis, environmental factors (pH, lactic acid, acetic acid, reducing sugar content, and protease activity) exhibited the major driver for the abundance of bacterial species (Spearman correlation coefficient: -0.71 to 0.78). As a potential food additive, casein hydrolysate can improve the fermentation and quality of glutinous rice dough, increase consumer acceptance of cereal foods, and give consumers healthier options.

5.
Food Res Int ; 174(Pt 2): 113664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981356

ABSTRACT

The emergence of antibiotic-resistant bacteria led to the misuse of antibiotics, resulting in the emergence of more resistant bacteria and continuous improvement in their resistance ability. Cronobacter sakazakii (C. sakazakii) has been considered a pathogen that harms infants. Incidents of C. sakazakii contamination have continued globally, several studies have indicated that C. sakazakii is increasingly resistant to antibiotics. A few studies have explored the mechanism of antibiotic resistance in C. sakazakii, and some have examined the antibiotic resistance and changes in virulence levels. We aimed to investigate the antibiotic resistance mechanism and virulence differences in C. sakazakii. The level of virulence factors of C. sakazakii was modified after induction by antibiotics compared with the antibiotic-sensitive strains, and the XS001-Ofl group had the strongest capacity to produce enterotoxin (85.18 pg/mL) and hemolysin (1.47 ng/mL). The biofilm formation capacity after induction significantly improved. The number of bases and mapped reads in all groups accounted for more than 55 % and 70 %, as detected by transcriptomic analysis. The resistance mechanism of different antibiotics was more common in efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. The level of antibiotic resistance mainly affected the expression of virulence genes associated with flagella assembly and synthesis.


Subject(s)
Cronobacter sakazakii , Humans , Infant , Cronobacter sakazakii/genetics , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...