Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.981
Filter
1.
Front Med (Lausanne) ; 11: 1364089, 2024.
Article in English | MEDLINE | ID: mdl-39011455

ABSTRACT

Gynecomastia can be caused by neurofibromas but has rarely been reported. The present case report describes the clinical appearance, diagnosis, and therapy of a rare combination of a 14 year-old adolescent male unilateral severe gynecomastia with NF-1 neurofibromatosis. In this particular case, we successfully performed minimally invasive surgery using endoscopic mastectomy, which not only resulted in a satisfactory appearance but also confirmed the presence of neurofibroma type 1 by detecting typical immunohistochemical indicators associated with the disease. Additionally, we analyzed the gene responsible for the disease, c.1431del: p. F477Lfs*21, based on the patient's family history.

2.
Environ Technol ; : 1-11, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016246

ABSTRACT

Phytoremediation enhanced by electric field has been considered a green and low-cost technology for remediating heavy metal-contaminated soils. Soil moisture is a main environmental factor that affects Cd availability in the soil. However, the effects of soil moisture and AC-electric field on the remediation efficiency of willow (Salix spp.) and S. Alfredii interplanted together remain unclear. In the present study, we designed four treatments (60% soil field capacity, 60% soil field capacity + 0.5 V·cm-1 AC, 100% soil field capacity, 100% soil field capacity + 0.5 V·cm-1 AC) to explore the impacts of soil moisture and AC-electric field on soil Cd availability and Cd accumulation in plants. The results showed that the application of an AC-electric field significantly increased soil Cd availability by 20.9% and 10.8% under both 60% and 100% soil field capacity, respectively. Both high water with and without AC-electric field treatments reduced the proportion of acid-extractable and reducible Cd of soil but increased the proportion of residual Cd. Compared with the control, an AC-electric field with 60% soil field capacity significantly enhanced the biomass of S. Alfredii shoots by 31.2% and increased Cd accumulation in willow leaves and S. Alfredii shoots by 14.6% and 32.3%, respectively. In addition, the biomass production of willow was significantly enhanced but the uptake of Cd by willow was dramatically decreased under an AC-electric field with high water treatment. Therefore, these results suggest that the AC-electric field combined with 60% soil field capacity may be a more promising remediation technique to clean up the Cd-contaminated soil.

3.
Biochim Biophys Acta Mol Basis Dis ; : 167358, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025374

ABSTRACT

Radiation-induced pulmonary fibrosis (RIPF) is a frequently encountered late complication in patients undergoing radiation therapy, presenting a substantial risk to patient mortality and quality of life. The pathogenesis of RIPF remains unclear, and current treatment options are limited in efficacy. High-dose vitamin C has demonstrated potential when used in conjunction with other adjuvant therapies due to potent anticancer properties. However, the potential relationship between high-dose vitamin C and RIPF has not yet been explored in existing literature. In our study, the RIPF model and the LLC tumor model were used as two animal models to explore how high-dose vitamin C can improve RIPF without hampering the antitumour efficacy of radiotherapy. The impact of high-dose vitamin C on RIPF was assessed through various assays, including micro-CT, HE staining, Masson staining, and immunohistochemistry. Our results indicated that administering high-dose vitamin C 2 days before radiation and continuing for a duration of 6 weeks significantly inhibited the progression of RIPF. In order to explore the mechanism by which high-dose vitamin C attenuates RIPF, we utilized RNA-seq analysis of mouse lung tissue in conjunction with publicly available databases. Our findings indicated that high-dose vitamin C inhibits the differentiation of fibroblasts into myofibroblasts by targeting S100A8 and S100A9 derived from neutrophils. Additionally, the combination of high-dose vitamin C and radiation demonstrated enhanced inhibition of tumor growth in a murine LLC tumor model. These results revealed that the combination of radiotherapy and high-dose vitamin C may offer a promising therapeutic approach for the clinical management of thoracic tumors and the prevention of RIPF.

4.
Heliyon ; 10(12): e33453, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39015808

ABSTRACT

Saikosaponin D (SSd) is a naturally active product with strong pharmacological activity found in Bupleurum scorzonerifolium Willd. Studies have shown that endophytic fungi have great potential as sources of natural medicines. Fusarium acuminatum (CHS3), an SSd-producing endophytic fungus, was isolated from B. scorzonerifolium. To elucidate the effect of host plants on the production of SSd in CHS3, CHS3 was co-cultured with suspension cells of B. scorzonerifolium and SSd was detected using high-performance liquid chromatography (HPLC). Transcriptome sequencing (RNA-Seq) of CHS3 before and after co-culture was performed using an Illumina HiSeq 2500 platform. The results indicated that the content of SSd synthesised by CHS3 increased after co-culture with suspension cells of B. scorzonerifolium. Transcriptome analysis of CHS3 with differentially expressed genes (DEGs) showed that 1202 and 1049 genes were upregulated and downregulated, respectively, after co-culture. Thirty genes associated with SSd synthesis and 11 genes related to terpene backbone biosynthesis were annotated to the Kyoto Encyclopaedia of Genes and Genomes (KEGG). Combined with transcriptome data, it was speculated that the mevalonate (MVA) pathway is a possible pathway for SSd synthesis in CHS3, and the expression of key enzyme genes (HMGR, HMGCS, GGPS1, MVK, FDFT1, FNTB) was validated by qRT-PCR. In conclusion, the endophytic fungus CHS3 can form an interactive relationship with its host, thereby promoting SSd biosynthesis and accumulation by upregulating the expression of key enzyme genes in the biosynthesis pathway.

5.
Sci Total Environ ; 947: 174612, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992382

ABSTRACT

Cydia pomonella granulovirus (CpGV) is a highly specific and environmentally friendly pathogenic virus successfully used as a biological insecticide against codling moth larvae. Continuous application of CpGV has led to high levels of resistance in codling moth, Cydia pomonella (C. pomonella). Nevertheless, the specific molecular mechanisms underlying the development of resistance in codling moths to CpGV have been rarely investigated. This study explored the potential antiviral immune roles of codling moth antimicrobial peptides (AMPs) against CpGV. A total of 11 AMP genes classified in cecropin, defensin, gloverin, and attacin subfamilies, were identified in the codling moth genome. The cecropin and gloverin subfamilies were found to be the ancestral genes of the AMP gene family. The expression of two AMP genes (CmGlo1 and CmAtt1) significantly increased following CpGV challenge, and CmGlo1 and CmAtt1 gene silencing resulted in a significant increase in CpGV replication in codling moth larvae. The hemolymph and fat body serve as major viral immune functional tissues in codling moth larvae. Moreover, zhongshengmycin significantly reduced the diversity and abundance of codling moth larvae gut microbiota, thereby suppressing the expression of CmAtt1 AMP gene. We also found that the combination of the virus with zhongshengmycin would enhance the insecticidal effects of CpGV. This study provides the first explanation of the molecular mechanisms driving CpGV immune function development in codling moths, approached from the perspective of the codling moth itself. Additionally, we introduced an alternative approach to combat codling moth in the field by combining antibiotics with biopesticides to amplify the insecticidal effects of the latter.

6.
J Colloid Interface Sci ; 675: 429-437, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981252

ABSTRACT

Aqueous sodium-ion batteries (ASIBs) show great promise as candidates for large-scale energy storage. However, the potential of ASIB is impeded by the limited availability of suitable anode types and the occurrence of dissolution side reactions linked to hydrogen evolution. In this study, we addressed these challenges by developing a Bi-coating modified anode based on a sodium titanium phosphate (NTP)-carbon fibers (CFs) hybrid electrode (NTP-CFs/Bi). The Bi-coating effectively mitigates the localized enrichment of hydroxyl anion (OH-) near the NTP surface, thus addressing the dissolution issue. Notably, the Bi-coating not only restricts the local abundance of OH- to inhibit dissolution but also ensures a higher capacity compared with other NTP-based anodes. Consequently, the NTP-CFs/Bi anode demonstrates an impressive specific capacity of 216.8 mAh/g at 0.2 mV/s and maintains a 90.7 % capacity retention after 1000 cycles at 6.3 A/g. This achievement sets a new capacity record among NTP-based anodes for sodium storage. Furthermore, when paired with a cathode composed of hydroxy nickel oxide directly grown on Ni foam, we assembled a seawater-based cell exhibiting high energy and power densities, surpassing the most recently reported ASIBs. This groundbreaking work lays the foundation for a potential method to develop long-life NTP-based anodes.

7.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000366

ABSTRACT

As a highly pathogenic avian virus, H5 influenza poses a serious threat to livestock, the poultry industry, and public health security. Hemagglutinin (HA) is both the dominant epitope and the main target of influenza-neutralizing antibodies. Here, we designed a nanoparticle hemagglutinin influenza vaccine to improve the immunogenicity of the influenza vaccine. In this study, HA5 subtype influenza virus was used as the candidate antigen and was combined with the artificially designed double-branch scaffold protein I53_dn5 A and B. A structurally correct and bioactive trimer HA5-I53_dn5B/Y98F was obtained through secretion and purification using an insect baculovirus expression system; I53_dn5A was obtained by purification using a prokaryotic expression system. HA5-I53_dn5B/Y98F and I53_dn5A self-assembled into spherical nanoparticles (HA5-I53_dn5) in vitro with a diameter of about 45 nm. Immunization and serum test results showed that both HA5-I53_dn5B/Y98F and HA5-I53_dn5 could induce HA5-specific antibodies; however, the immunogenicity of HA5-I53_dn5 was better than that of HA5-I53_dn5B/Y98F. Groups treated with HA5-I53_dn5B and HA5-I53_dn5 nanoparticles produced IgG antibody titers that were not statistically different from those of the nanoparticle-containing adjuvant group. This production of trimerized HA5-I53_dn5B and HA5-I53_dn5 nanoparticles using baculovirus expression provides a reference for the development of novel, safe, and efficient influenza vaccines.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Nanoparticles , Influenza Vaccines/immunology , Animals , Nanoparticles/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Mice , Mice, Inbred BALB C , Antibody Formation/immunology , Female , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Humans
8.
Opt Lett ; 49(13): 3729-3732, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950253

ABSTRACT

In this paper, a dynamic updated key distribution encryption scheme based on syncretic W band-passive optical network (PON) is proposed. The 102 Gb/s encrypted data rate using 64QAM is successfully transmitted over the 50 m wireless distance under 15% soft-decision forward error correction (SD-FEC) for a pre-FEC bit error rate (BER) threshold of 1.56 × 10-2. The scheme can realize an error-free public key transmission and public key updates up to 1014 times. In the encryption transmission system, there is a small deviation of the private key, and the received BER is more than 0.45. As far as we know, this is the first time to complete a dynamic key distribution based on a syncretic W band-PON system.

9.
J Am Chem Soc ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980064

ABSTRACT

Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.

10.
Sci Total Environ ; 947: 174426, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969123

ABSTRACT

Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of ß-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.

11.
J Nerv Ment Dis ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008889

ABSTRACT

ABSTRACT: COVID-19 survivors complained of the experience of cognitive impairments, which also called "brain fog" even recovered. The study aimed to describe long-term cognitive change and determine psychosocial factors in COVID-19 survivors. A cross-sectional study was recruited 285 participants from February 2020 to April 2020 in 17 hospitals in Sichuan Province. Cognitive function, variables indicative of the virus infection itself, and psychosocial variables were collected by telephone interview. Univariate logistic regression and Lasso logistic regression models were used for variable selection which plugged into a multiple logistics model. Overall prevalence of moderate or severe cognitive impairment was 6.3%. Logistic regression showed that sex, religion, smoking status, occupation, self-perceived severity of illness, sleep quality, perceived mental distress after COVID-19, perceived discrimination from relatives and friends, and suffered abuse were associated with cognitive impairment. The long-term consequences of cognitive function are related to multiple domains, in which psychosocial factors should be taken into consideration.

12.
Nanotechnology ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008966

ABSTRACT

Spin torque nano-oscillators possessing fast nonlinear dynamics and short-term memory functions are potentially able to achieve energy-efficient neuromorphic computing. In this study, we introduce an activation-state controllable spin neuron unit composed of vertically coupled vortex spin torque oscillators and a V-I source circuit is proposed and used to build an energy-efficient sparse reservoir computing system to solve nonlinear dynamic system prediction task. Based on micromagnetic and electronic circuit simulation, the Mackey-Glass chaotic time series and the real motor vibration signal series can be predicted by the reservoir computing system with merely 20 and 100 spin neuron units, respectively. Further study shows that the proposed sparse reservoir system could reduce energy consumption without significantly compromising performance, and a minimal response from inactivated neurons is crucial for maintaining the system's performance. The accuracy and signal processing speed show the potential of the proposed sparse reservoir computing system for high performance and low-energy neuromorphic computing. .

13.
J Environ Manage ; 365: 121600, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963957

ABSTRACT

Electrolytic manganese residue (EMR) is known for high concentrations of Mn2+, NH4+, and heavy metals. Failure to undergo benign treatment and landfill disposal would undeniably lead to negative impacts on the quality of the surrounding ecological environment. This study sought to mitigate the latent environmental risks associated with EMR using a cooperative solidification/stabilization (S/S) method involving coal fly ash (CFA). Leveraging leaching toxicity tests, the leaching behavior of pollutants in electrolytic manganese residue-based geopolymer materials (EMRGM) was determined. At the same time, mechanistic insights into S/S processes were explored utilizing characterization techniques such as XRF, XRD, FT-IR, SEM-EDS, and XPS. Those results confirmed significant reductions in the leaching toxicities of Mn2+ and NH4+ to 4.64 µg/L and 0.99 mg/L, respectively, with all other heavy metal ions falling within the permissible limits set by relevant standards. Further analysis shows that most of NH4+ volatilizes into the air as NH3, and a small part is fixed in the EMRGM in the form of struvite; in addition to being oxidized to MnOOH and MnO2, Mn2+ will also be adsorbed and wrapped by silicon-aluminum gel together with other heavy metal elements in the form of ions or precipitation. This research undeniably provides a solid theoretical foundation for the benign treatment and resourceful utilization of EMR and CFA, two prominent industrial solid wastes.


Subject(s)
Coal Ash , Manganese , Coal Ash/chemistry , Manganese/chemistry , Metals, Heavy/chemistry
14.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995418

ABSTRACT

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Subject(s)
Cordyceps , Genome, Viral , Phylogeny , RNA, Viral , Cordyceps/genetics , RNA, Viral/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Viral Proteins/genetics , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , RNA-Dependent RNA Polymerase/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Amino Acid Sequence , Open Reading Frames
15.
Oncol Lett ; 28(3): 412, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988441

ABSTRACT

The aim of the present study was to evaluate the diagnostic and prognostic significance of the long non-coding RNA (lncRNA) endoplasmic reticulum membrane protein complex subunit 3 antisense RNA 1 (EMC3-AS1) in liver cancer, and its impact on the proliferative and invasive capabilities of liver cancer cells. EMC3-AS1 expression in liver cancer was assessed using data from The Cancer Genome Atlas and three Gene Expression Omnibus datasets, and validated in clinical liver cancer samples using reverse transcription-quantitative PCR. The prognostic and diagnostic potentials of this lncRNA were evaluated using Kaplan-Meier and receiver operating characteristic analyses, respectively. The infiltration of immune cells and differential expression of immune checkpoints (ICs) between high- and low-EMC3-AS1 expression groups were investigated. Therapeutic correlation analyses were also undertaken to assess the impact of EMC3-AS1 in the treatment of liver cancer. In addition, in vitro experiments were conducted using small interfering RNA to knock down the expression of EMC3-AS1 in HepG2, Sk-Hep-1 and Huh-7 cells, and evaluate the effect on cell proliferation, colony formation and migration. The results revealed a significant upregulation of EMC3-AS1 expression in liver cancer tissues compared with that in adjacent normal tissues, which was associated with an unfavorable prognosis and demonstrated diagnostic effectiveness for patients with liver cancer. Furthermore, patients with high EMC3-AS1 expression exhibited increased levels of IC markers in comparison with those with low EMC3-AS1 expression. In addition, EMC3-AS1 was indicated to have clinical significance in the prediction of the response to immunotherapy and chemotherapy. Notably, the in vitro experiments demonstrated that the knockdown of EMC3-AS1 significantly hindered cell proliferation, colony formation and migration. Consequently, it was concluded that EMC3-AS1 is upregulated in liver cancer and serves as a prognostic indicator for unfavorable outcomes in patients with liver cancer. Additionally, targeting EMC3-AS1 through knockdown interventions showed potential in mitigating the ability of liver cancer cells to proliferate and migrate, which highlights its dual role as a biomarker and therapeutic target for liver cancer.

16.
Front Cell Infect Microbiol ; 14: 1408388, 2024.
Article in English | MEDLINE | ID: mdl-38988810

ABSTRACT

Background: Surgical site infection (SSI) is a common complication in HIV-positive fracture patients undergoing surgery, leading to increased morbidity, mortality, and healthcare costs. Accurate prediction of SSI risk can help guide clinical decision-making and improve patient outcomes. However, there is a lack of user-friendly, Web-based calculator for predicting SSI risk in this patient population. Objective: This study aimed to develop and validate a novel web-based risk calculator for predicting SSI in HIV-positive fracture patients undergoing surgery in China. Method: A multicenter retrospective cohort study was conducted using data from HIV-positive fracture patients who underwent surgery in three tertiary hospitals in China between May 2011 and September 2023. We used patients from Beijing Ditan Hospital as the training cohort and patients from Chengdu Public Health and Changsha First Hospital as the external validation cohort. Univariate, multivariate logistic regression analyses and SVM-RFE were performed to identify independent risk factors for SSIs. A web-based calculator was developed using the identified risk factors and validated using an external validation cohort. The performance of the nomogram was evaluated using the area under the receiver operating characteristic (AUC) curves, calibration plots, and decision curve analysis (DCA). Results: A total of 338 HIV-positive patients were included in the study, with 216 patients in the training cohort and 122 patients in the validation cohort. The overall SSI incidence was 10.7%. The web-based risk calculator (https://sydtliubo.shinyapps.io/DynNom_for_SSI/) incorporated six risk factors: HBV/HCV co-infection, HIV RNA load, CD4+ T-cell count, Neu and Lym level. The nomogram demonstrated good discrimination, with an AUC of 0.890 in the training cohort and 0.853 in the validation cohort. The calibration plot showed good agreement between predicted and observed SSI probabilities. The DCA indicated that the nomogram had clinical utility across a wide range of threshold probabilities. Conclusion: Our study developed and validated a novel web-based risk calculator for predicting SSI risk in HIV-positive fracture patients undergoing surgery in China. The nomogram demonstrated good discrimination, calibration, and clinical utility, and can serve as a valuable tool for risk stratification and clinical decision-making in this patient population. Future studies should focus on integrating this nomogram into hospital information systems for real-time risk assessment and management.


Subject(s)
HIV Infections , Internet , Surgical Wound Infection , Humans , Male , China/epidemiology , Female , Middle Aged , HIV Infections/complications , Retrospective Studies , Risk Factors , Surgical Wound Infection/epidemiology , Adult , Risk Assessment/methods , ROC Curve , Nomograms
17.
IEEE Trans Cybern ; PP2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959152

ABSTRACT

Hybridization plays a prominent role in bolstering the performance of optimization algorithms (OAs), yet designing efficient hybrid OAs tailored to intricate optimization problems persists as a formidable task. This article introduces a novel top-down methodology for the automated design of hybrid OAs, treating algorithm design as a meta-optimization problem. A general design template for collaboration-based hybrid OAs is developed, integrating a multitude of hybridization strategies for the first time. Besides, a mathematical model is built to formulate the meta-optimization problem of algorithm design. To address the meta-optimization challenge, an improved multifactorial evolutionary algorithm is proposed to automatically design efficient hybrid metaheuristics in a multitasking environment for the given instances with diverse features. To verify the effectiveness of the proposed design methodology, it is applied to the CEC2017 benchmark functions and the binary knapsack problem. Numerical results have demonstrated the feasibility and effectiveness of the proposed methodology for both continuous and combinatorial optimization benchmarks.

18.
Science ; 385(6704): 68-74, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963855

ABSTRACT

Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.

19.
Eur J Pharm Sci ; 200: 106837, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960206

ABSTRACT

Intractable lymphatic malformations (iLM) pose a significant threat to affected children, demonstrating limited responses to conventional treatments. Sirolimus, effectively inhibiting endothelial cell proliferation in lymphatic vessels, plays a crucial role in iLM treatment. However, the drug's narrow therapeutic window and substantial interindividual variability necessitate customized dosing strategies. This study aims to establish a Population Pharmacokinetic Model (PopPK model) for sirolimus in pediatric iLM patients, identifying quantitative relationships between covariates and sirolimus clearance and volume of distribution. Initial dosages are recommended based on a target concentration range of 5-15 ng/mL. Retrospective data from our institution, encompassing 53 pediatric patients with 275 blood concentration results over the past five years (average age: 4.64 ± 4.19 years), constituted the foundation of this analysis. The final model, adopting a first-order absorption and elimination single-compartment model, retained age as the sole covariate. Results indicated a robust correlation between apparent clearance (CL/F) at 5.56 L/h, apparent volume of distribution (V/F) at 292.57 L, and age. Monte Carlo simulation guided initial dosages for patients aged 0-18 years within the target concentration range. This study presents the first PopPK model using a large Therapeutic Drug Monitoring (TDM) database to describe personalized sirolimus dosing for pediatric iLM patients, contributing to pharmacokinetic guidance and potentially improving long-term clinical outcomes.

20.
Chemistry ; : e202401802, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946439

ABSTRACT

How to coordinate electron and ion transport behavior across scales and interfaces within ion battery electrodes? The exponential increase in surface area observed in nanoscale electrode materials results in an incomprehensibly vast spatial interval. Herein, to address the problems of volume expansion, dissolution of cathode material, and the charge accumulation problem existing in manganiferous materials for zinc ion batteries, metal organic framework is utilized to form the architecture of non-interfacial blocking ~10 nm Mn2O3 nanoparticles and amorphous carbon hybrid electrode materials, demonstrating a high specific capacity of 361 mAh g-1 (0.1 A g-1), and excellent cycle stability of 105 mAh g-1 after 2000 cycles under 1 A g-1. The uniform and non-separated disposition of Mn and C atoms constitutes an interconnected network with high electronic and ionic conductivity, minimizing issues like structural collapse and volume expansion of the electrode material during cycling. The cooperative insert mechanism of H+ and Zn2+ are analyzed via ex-situ XRD and in-situ Raman tests. The model battery is assembled to present practical possibilities. The results indicate that MOF-derived carbonization provides an effective strategy for exploring Mn-based electrode materials with high ion and electron transport capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...