Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Small ; : e2401429, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808805

ABSTRACT

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

2.
Mater Horiz ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742392

ABSTRACT

Polyurethane (PU) foams, pivotal in modern life, face challenges suh as fire hazards and environmental waste burdens. The current reliance of PU on potentially ecotoxic halogen-/phosphorus-based flame retardants impedes large-scale material recycling. Here, our demonstrated controllable catalytic cracking strategy, using cesium salts, enables self-evolving recycling of flame-retardant PU. The incorporation of cesium citrates facilitates efficient urethane bond cleavage at low temperatures (160 °C), promoting effective recycling, while encouraging pyrolytic rearrangement of isocyanates into char at high temperatures (300 °C) for enhanced PU fire safety. Even in the absence of halogen/phosphorus components, this foam exhibits a substantial increase in ignition time (+258.8%) and a significant reduction in total smoke release (-79%). This flame-retardant foam can be easily recycled into high-quality polyol under mild conditions, 60 °C lower than that for the pure foam. Notably, the trace amounts of cesium gathered in recycled polyols stimulate the regenerated PU to undergo self-evolution, improving both flame-retardancy and mechanical properties. Our controllable catalytic cracking strategy paves the way for the self-evolutionary recycling of high-performance firefighting materials.

3.
ACS Appl Mater Interfaces ; 16(15): 19519-19528, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38580622

ABSTRACT

The inherent flammability of most polymeric materials poses a significant fire hazard, leading to substantial property damage and loss of life. A universal flame-retardant protective coating is considered as a promising strategy to mitigate such risks; however, simultaneously achieving high transparency of the coatings remains a great challenge. Here, inspired by the moth eye effect, we designed a nanoporous structure into a protective coating that leverages a hydrophilic-hydrophobic interactive assembly facilitated by phosphoric acid protonated amino siloxane. The coating demonstrates robust adhesion to a diverse range of substrates, including but not limited to fabrics, foams, paper, and wood. As expected, its moth-eye-inspired nanoporous structure conferred a high visible light transparency of >97% and water vapor transmittance of 96%. The synergistic effect among phosphorus (P), nitrogen (N), and silicon (Si) largely enhanced the char-forming ability and restricted the decomposition of the coated substrates, which successfully endowed the coating with high fire-fighting performance. More importantly, for both flexible and rigid substrates, the coated samples all possessed great mechanical properties. This work provides a new insight for the design of protective coatings, particularly focusing on achieving high transparency.

4.
Langmuir ; 40(13): 6962-6970, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38523302

ABSTRACT

It is critical to remove organic contaminants from wastewater released by the printing and dyeing industry for addressing water pollution issue. Therefore, the fabrication of new adsorbents with excellent removal efficiencies is an urgent task. A composite of MIL-101 partially functionalized with -SO3H (MIL-101-SO3H) and graphene oxide (GO) was prepared by assembling MIL-101-SO3H truncated octahedrons on the GO framework. The synthesized MIL-101-SO3H@GO has a superior adsorption efficiency for anionic azo dyes. The maximum adsorption capacities of MIL-101-SO3H@GO-1 for Congo red, methyl orange, acid orange 7, and acid orange G reached 2711.3, 818.8, 551.2, and 319.8 mg/g, respectively, which are considerably higher than those obtained using unmodified MIL-101. This is because additional interactions that promote azo dye adsorption, such as hydrogen bonding between the dye and the sulfonic acid groups of MIL-101-SO3H or the carboxyl groups of GO, were induced, and agglomerate pores that accommodated the dye were formed in the composite. The ultrahigh removal efficiency of the composite for azo dyes is mainly driven by hydrogen bonding, electrostatic interactions, π-π stacking between the MIL-101-SO3H@GO and dye molecules, synergistic interactions at the interface of GO and MIL-101-SO3H microcrystals, and the pore-filling effect. Understanding these driving forces for dye adsorption can contribute to the development of sustainable and functionally modified metal-organic framework composite adsorbents.

5.
J Inflamm Res ; 17: 1659-1669, 2024.
Article in English | MEDLINE | ID: mdl-38504695

ABSTRACT

Purpose: In this study, our objective was to investigate the potential utility of lymphocyte-C-reactive protein ratio (LCR) as a predictor of disease progression and a screening tool for intensive care unit (ICU) admission in adult patients with acute pancreatitis (AP). Methods: We included a total of 217 adult patients with AP who were admitted to the First Affiliated Hospital of Harbin Medical University between July 2019 and June 2022. These patients were categorized into three groups: mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP), based on the presence and duration of organ dysfunction. Various demographic and clinical data were collected and compared among different disease severity groups. Results: Height, diabetes, lymphocyte count (LYMPH), lymphocyte percentage (LYM%), platelet count (PLT), D-Dimer, albumin (ALB), blood urea nitrogen (BUN), serum creatinine (SCr), glucose (GLU), calcium ion (Ca2+), C-reactive protein (CRP), procalcitonin (PCT), hospitalization duration, ICU admission, need for BP, LCR, sequential organ failure assessment (SOFA) score, bedside index for severity in AP (BISAP) score, and modified Marshall score showed significant differences across different disease severity groups upon hospitalization. Notably, there were significant differences in LCR between the MAP group and the MSAP and SAP combined group, and the MAP and MSAP combined group and the SAP group, and adult AP patients with ICU admission and those without ICU admission upon hospitalization. Conclusion: In summary, LCR upon hospitalization can be utilized as a simple and reliable predictor of disease progression and a screening tool for ICU admission in adult patients with AP.

6.
J Int Med Res ; 52(3): 3000605241236278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483140

ABSTRACT

OBJECTIVE: To assess the efficacy of dynamic changes in lymphocyte-C-reactive protein ratio (LCR) on differentiating disease severity and predicting disease progression in adult patients with Coronavirus disease 2019 (COVID-19). METHODS: This single-centre retrospective study enrolled adult COVID-19 patients categorized into moderate, severe and critical groups according to the Diagnosis and Treatment of New Coronavirus Pneumonia (ninth edition). Demographic and clinical data were collected. LCR and sequential organ failure assessment (SOFA) score were calculated. Lymphocyte count and C-reactive protein (CRP) levels were monitored on up to four occasions. Disease severity was determined concurrently with each LCR measurement. RESULTS: This study included 145 patients assigned to moderate (n = 105), severe (n = 33) and critical groups (n = 7). On admission, significant differences were observed among different disease severity groups including age, comorbidities, neutrophil proportion, lymphocyte count and proportion, D-Dimer, albumin, total bilirubin, direct bilirubin, indirect bilirubin, CRP and SOFA score. Dynamic changes in LCR showed significant differences across different disease severity groups at different times, which were significantly inversely correlated with disease severity of COVID-19, with correlation coefficients of -0.564, -0.548, -0.550 and -0.429 at four different times. CONCLUSION: Dynamic changes in LCR can effectively differentiate disease severity and predict disease progression in adult COVID-19 patients.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/diagnosis , Retrospective Studies , C-Reactive Protein/analysis , SARS-CoV-2 , Biomarkers , Patient Acuity , Severity of Illness Index , Lymphocytes/metabolism , Disease Progression , Bilirubin
7.
World J Gastrointest Surg ; 16(2): 491-502, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463355

ABSTRACT

BACKGROUND: Transjugular intrahepatic portosystemic shunt (TIPS) placement is a procedure that can effectively treat complications of portal hypertension, such as variceal bleeding and refractory ascites. However, there have been no specific studies on predicting long-term survival after TIPS placement. AIM: To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS. METHODS: A retrospective analysis was conducted on a cohort of 224 patients who underwent TIPS implantation. Through univariate and multivariate Cox regression analyses, various factors were examined for their ability to predict survival at 6 years after TIPS. Consequently, a composite score was formulated, encompassing the indication, shunt reasonability, portal venous pressure gradient (PPG) after TIPS, percentage decrease in portal venous pressure (PVP), indocyanine green retention rate at 15 min (ICGR15) and total bilirubin (Tbil) level. Furthermore, the performance of the newly developed Cox (NDC) model was evaluated in an internal validation cohort and compared with that of a series of existing models. RESULTS: The indication (variceal bleeding or ascites), shunt reasonability (reasonable or unreasonable), ICGR15, postoperative PPG, percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement. The NDC model incorporated these parameters and successfully identified patients at high risk, exhibiting a notably elevated mortality rate following the TIPS procedure, as observed in both the training and validation cohorts. Additionally, in terms of predicting the long-term survival rate, the performance of the NDC model was significantly better than that of the other four models [Child-Pugh, model for end-stage liver disease (MELD), MELD-sodium and the Freiburg index of post-TIPS survival]. CONCLUSION: The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis, help identify high-risk patients and guide follow-up management after TIPS implantation.

8.
Small ; 20(5): e2306274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759380

ABSTRACT

Efficient electrocatalysts capable of operating continuously at industrial ampere-level current densities are crucial for large-scale applications of electrocatalytic water decomposition for hydrogen production. However, long-term industrial overall water splitting using a single electrocatalyst remains a major challenge. Here, bimetallic polyphthalocyanine (FeCoPPc)-anchored Ru nanoclusters, an innovative electrocatalyst comprising the hydrogen evolution reaction (HER) active Ru and the oxygen evolution reaction (OER) active FeCoPPc, engineered for efficient overall water splitting are demonstrated. By density functional theory calculations and systematic experiments, the electrocatalytic coenhancement effect resulting from unique charge redistribution, which synergistically boosts the HER activity of Ru and the OER activity of FeCoPPc by optimizing the adsorption energy of intermediates, is unveiled. As a result, even at a large current density of 2.0 A cm-2 , the catalyst exhibits low overpotentials of 220 and 308 mV, respectively, for HER and OER. It exhibits excellent stability, requiring only 1.88 V of cell voltage to achieve a current density of 2.0 A cm-2 in a 6.0 m KOH electrolyte at 70 °C, with a remarkable operational stability of over 100 h. This work provides a new electrocatalytic coenhancement strategy for the design and synthesis of electrocatalyst, paving the way for industrial-scale overall water splitting applications.

9.
Mater Horiz ; 11(4): 978-987, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38112580

ABSTRACT

Smart and dynamic electromagnetic interference (EMI) shielding materials possess a remarkable capacity to modify their EMI shielding abilities, rendering them invaluable in various civil and military applications. However, the present response mechanism of switch-type EMI shielding materials is slightly restricted, as it primarily depends on continuous pressure induction, thereby resulting in concerns regarding their durability and reliability. Herein, for the first time, we demonstrate a novel method for achieving solvent-responsive, reversible switching, and robust EMI shielding capabilities using a controlled proton-reservoir ordered gel. The gel contains polyaniline (PANI) and sodium alginate (SA). Initially, SA acts as a proton reservoir for PANI in an aqueous system, enhancing the doping level of PANI and improving its electrical conductivity. Additionally, PANI and SA chains respond to diverse polar solvents, such as water, acetonitrile, ethanol, n-hexane, and air, inducing distinct conformations that affect the degree of PANI conjugation and electron migration along the chains. This process is reversible and non-destructive to the polymer chain, ensuring the effective and uncompromised performance of the EMI shielding switch. We can achieve precise and reversible tuning (on/off) of EMI shielding with different effectiveness levels by manipulating the solvents within the framework. This work opens a new solvent-stimuli avenue for the development of EMI shielding materials with reliable and intelligent on/off switching capabilities.

10.
Cell Death Dis ; 14(11): 751, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978168

ABSTRACT

Breast cancer is the most prevalent cancer globally, endangering women's physical and mental health. Phospholipase D3 (PLD3) belongs to the phosphodiesterase family (PLD). PLD3 is related to insulin-mediated phosphorylation of the AKT pathway, suggesting that it may play a role in the occurrence and development of malignant tumors. This study may further explore the molecular mechanism of PLD3 inhibiting breast cancer cell proliferation. In this study, we demonstrated that PLD3 and miR-6796 are co-expressed in breast cancer. PLD3 can bind with CDK1 and inhibit its expression, leading to mitotic arrest and inhibiting breast cancer proliferation. Wild-type p53 regulates PLD3 and miR-6796 expression by competitively binding to the PLD3 promoter with ZEB1. DNMT3B, as the target gene of miR-6796, is recruited into the PLD3 promoter by combining with ZEB1 to regulate the DNA methylation of the PLD3 promoter and ultimately affect PLD3 and miR-6796 expression. In conclusion, we revealed the role and molecular mechanism of PLD3 and its embedded miR-6796 in breast cancer proliferation, providing clues and a theoretical foundation for future research and development of therapeutic targets and prognostic markers for breast cancer.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Feedback , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
11.
Org Lett ; 25(45): 8110-8115, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37921830

ABSTRACT

The current investigation presents an innovative palladium-catalyzed asymmetric carbonylative Heck esterification method. This approach facilitates the efficient synthesis of various chiral γ-ketoacid esters by utilizing o-alkenyliodobenzenes and arylboronic acids as primary substrates. This reaction achieves the creation of three carbon-carbon bonds, two carbon-oxygen bonds, and the establishment of a quaternary carbon center within a single step. The α-chiral γ-ketoacid esters were obtained in yields ranging from good to high yields, displaying enantiomeric excesses (ee's) levels up to 92% under mild reaction conditions.

12.
Angew Chem Int Ed Engl ; 62(51): e202312638, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37759361

ABSTRACT

Although a variety of dynamic covalent bonds have been successfully used in the development of diverse sustainable thermosetting polymers and their composites, solving the trade-off between recovery efficiency and comprehensive properties is still a major challenge. Herein, a "one-stone-two-birds" strategy of lower rotational energy barrier (Er ) phosphate-derived Diels-Alder (DA) cycloadditions was proposed for easily recyclable carbon fiber (CF)-reinforced epoxy resins (EPs) composites. In such a strategy, the phosphate spacer with lower Er accelerated the segmental mobility and dynamic DA exchange reaction for network rearrangement to achieve high-efficiency repairing, reprocessing of the EPs matrix and its composites and rapid nondestructive recycling of CF; meanwhile, incorporating phosphorus-based units especially reduced their fire hazards. The resulting materials simultaneously showed excellent thermal/mechanical properties, superb fire safety and facile recyclability, realizing the concept of recycling for high-performance thermosetting polymers and composites. This strategy is of great significance for understanding and enriching the molecular connotation of DA chemistry, making it potentially applicable to the design and development of a wide range of dynamic covalent adaptable materials toward practical cutting-edge-tech applications.

13.
World J Gastroenterol ; 29(24): 3899-3921, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37426317

ABSTRACT

BACKGROUND: Cirrhosis results from persistent liver injury that leads to liver fibrosis. Immunological factors play important regulatory roles in the development and progression of cirrhosis. Bibliometrics is one of the most commonly used methods for systematic evaluation of a field of study. To date, there are no bibliometric studies on the role of immunological factors in cirrhosis. AIM: To provide a comprehensive overview of the knowledge structure and research hotspots of immunological factors in cirrhosis. METHODS: We retrieved publications related to immunological factors in cirrhosis between 2003 to 2022 from the Web of Science Core Collection database on December 7, 2022. The search strategy was TS = ((Liver Cirrhosis OR hepatic cirrhosis OR liver fibrosis) AND (Immunologic* Factor* OR Immune Factor* OR Immunomodulator* OR Biological Response Modifier* OR Biomodulator*)). Only original articles and reviews were included. A total of 2873 publications were analyzed using indicators of publication and citation metrics, countries, institutes, authors, journals, references, and keywords by CiteSpace and VOSviewer. RESULTS: A total of 5104 authors from 1173 institutions across 51 countries published 2873 papers on cirrhosis and immunological factors in 281 journals. In the past 20 years, the increasing number of related annual publications and citations indicates that research on immunological factors in cirrhosis has become the focus of attention and has entered a period of accelerated development. The United States (781/27.18%), China (538/18.73%), and Germany (300/10.44%) were the leading countries in this field. Most of the top 10 authors were from the United States (4) and Germany (3), with Gershwin ME contributing the most related articles (42). World Journal of Gastroenterology was the most productive journal, whereas Hepatology was the most co-cited journal. Current research hotspots regarding immunological factors in cirrhosis include fibrosis, cirrhosis, inflammation, liver fibrosis, expression, hepatocellular carcinoma, activation, primary biliary cirrhosis, disease, and hepatic stellate cells. Burst keywords (e.g., epidemiology, gut microbiota, and pathways) represent research frontiers that have attracted the interest of researchers in recent years. CONCLUSION: This bibliometric study comprehensively summarizes the research developments and directions of immunological factors in cirrhosis, providing new ideas for promoting scientific research and clinical applications.


Subject(s)
Immunologic Factors , Liver Cirrhosis , Humans , Adjuvants, Immunologic , Benchmarking , Liver Cirrhosis/epidemiology , Bibliometrics
14.
Pharmacol Res ; 195: 106863, 2023 09.
Article in English | MEDLINE | ID: mdl-37480971

ABSTRACT

Human papillomavirus (HPV) infection is a causative agent of cervical cancer (CC). N6-methyladenosine (m6A) modification is implicated in carcinogenesis and tumor progression. However, the involvement of m6A modification in HPV-involved CC remains unclear. Here we showed that HPV E6/7 oncoproteins affected the global m6A modification and E7 specifically promoted the expression of ALKBH5. We found that ALKBH5 was significantly upregulated in CC and might serve as a valuable prognostic marker. Forced expression of ALKBH5 enhanced the malignant phenotypes of CC cells. Mechanistically, we discovered that E7 increased ALKBH5 expression through E2F1-mediated activation of the H3K27Ac and H3K4Me3 histone modifications, as well as post-translational modification mediated by DDX3. ALKBH5-mediated m6A demethylation enhanced the expression of PAK5. The m6A reader YTHDF2 bound to PAK5 mRNA and regulated its stability in an m6A-dependent manner. Moreover, ALKBH5 promoted tumorigenesis and metastasis of CC by regulating PAK5. Overall, our findings herein demonstrate a significant role of ALKBH5 in CC progression in HPV-positive cells. Thus, we propose that ALKBH5 may serve as a prognostic biomarker and therapeutic target for CC patients.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Papillomavirus Infections/genetics , Carcinogenesis/genetics , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism
15.
J Ethnopharmacol ; 317: 116671, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37263317

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tibetan Patent Medicines (TPMs) have unique advantages in the treatment of ischemic stroke (IS) with the features of multi-component, multi-channel, and multi-target. In China, five TPMs mainly consisting of precious medicinal materials such as gold, pearls, and agate are widely utilized to treat IS and have achieved good results according to the current clinical practice. AIM OF THE STUDY: To systematically evaluate the efficacy and safety of the five TPMs orally in treating IS and provide a reference for future clinical application and research. MATERIALS AND METHODS: We searched the following 24 databases up to December 11, 2022: China National Knowledge Infrastructure (CNKI), Wanfang database, China Science and Technology Journal Database, Chinese Biomedical Database (CBM), PubMed, Embase, Web of Science, MEDLINE, Scopus, the Cochrane Library, ScienceDirect, etc. Comprehensive searches for randomized controlled trials (RCTs) of the five TPMs for IS were conducted. Outcome measures included clinical effective rate, neurological impairment score, activities of daily living (ADL), hematologic indices, and adverse events (AEs). The meta-regression, subgroup analyses, and sensitivity analyses were conducted to explore the sources of heterogeneity. We assessed the evidence grade of outcomes via the GRADE system. TSA software was used for trial sequential analyses of the clinical effective rate, neurological impairment score, and ADL. RESULTS: 17 RCTs (1603 patients) met our criteria. Compared with the control groups, the five TPMs showed greater improvement in clinical effective rate (RR = 1.23, 95% CI 1.17 to 1.29, P < 0.00001), neurological impairment score (SMD = -1.71, 95% CI -2.31 to -1.10, P < 0.00001), ADL (SMD = 1.97, 95% CI 1.26 to 2.68, P < 0.00001), hematocrit (MD = -1.56, 95% CI -2.83 to -0.29, P = 0.02), and hypersensitive-c-reactive-protein (MD = -2.96, 95% CI -3.30 to -2.61, P < 0.00001). AEs were reported in four RCTs and there was no statistical difference between groups (RD = -0.00, 95% CI -0.04 to 0.03, P = 0.82). The quality of evidence of the outcomes was rated as low to very low according to the GRADE system. The results of TSA provided firm evidence for the significant effect of the five TPMs on clinical effective rate, neurological impairment score, and ADL. CONCLUSIONS: This review showed that the five TPMs were beneficial in improving clinical effective rate, neurological impairment scores, and ADL. However, no definite conclusions for hematologic indices and AEs were drawn due to insufficient studies. Further high-quality clinical trials are required to confirm these findings.


Subject(s)
Ischemic Stroke , Humans , Tibet , Randomized Controlled Trials as Topic , Treatment Outcome , Ischemic Stroke/drug therapy , China
16.
ACS Appl Mater Interfaces ; 15(27): 32803-32813, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37366118

ABSTRACT

Heterostructure engineering has emerged as a promising approach for creating high-performance microwave absorption materials in various applications such as advanced communications, portable devices, and military fields. However, achieving strong electromagnetic wave attenuation, good impedance matching, and low density in a single heterostructure remains a significant challenge. Herein, a unique structural design strategy that employs a hollow structure coupled with gradient hierarchical heterostructures to achieve high-performance microwave absorption is proposed. MoS2 nanosheets are uniformly grown onto the double-layered Ti3C2Tx MXene@rGO hollow microspheres through self-assembly and sacrificial template techniques. Notably, the gradient hierarchical heterostructures, comprising a MoS2 impedance matching layer, a reduced graphene oxide (rGO) lossy layer, and a Ti3C2Tx MXene reflective layer, have demonstrated significant improvements in impedance matching and attenuation capabilities. Additionally, the incorporation of a hollow structure can further improve microwave absorption while reducing the overall composite density. The distinctive gradient hollow heterostructures enable Ti3C2Tx@rGO@MoS2 hollow microspheres with exceptional microwave absorption properties. The reflection loss value reaches as strong as -54.2 dB at a thin thickness of 1.8 mm, and the effective absorption bandwidth covers the whole Ku-band, up to 6.04 GHz. This work provides an exquisite perspective on heterostructure engineering design for developing next-generation microwave absorbers.

17.
Small ; 19(36): e2302132, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37127874

ABSTRACT

Ultrathin 2D porous carbon-based materials offer numerous fascinating electrical, catalytic, and mechanical properties, which hold great promise in various applications. However, it remains a formidable challenge to fabricate these materials with tunable morphology and composition by a simple synthesis strategy. Here, a facile one-step self-flowering method without purification and harsh conditions is reported for large-scale fabrication of high-quality ultrathin (≈1.5 nm) N-doped porous carbon nanosheets (NPC) and their composites. It is demonstrated that the layered tannic/oxamide (TA/oxamide) hybrid is spontaneously blown, exfoliated, bloomed, in situ pore-formed, and aromatized during pyrolysis to form flower-like aggregated NPC. This universal one-step self-flowering system is compatible with various precursors to construct multiscale NPC-based composites (Ru@NPC, ZnO@NPC, MoS2 @NPC, Co@NPC, rGO@NPC, etc.). Notably, the programmable architecture enables NPC-based materials with excellent multifunctional performances, such as microwave absorption and hydrogen evolution. This work provides a facile, universal, scalable, and eco-friendly avenue to fabricate functional ultrathin porous carbon-based materials with programmability.

18.
Cell Prolif ; 56(3): e13372, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36480483

ABSTRACT

Maternal ageing is one of the major causes of reduced ovarian reserve and low oocyte quality in elderly women. Decreased oocyte quality is the main cause of age-related infertility. Mitochondria are multifunctional energy stations that determine the oocyte quality. The mitochondria in aged oocytes display functional impairments with mtDNA damage, which leads to reduced competence and developmental potential of oocytes. To improve oocyte quality, mitochondrial supplementation is carried out as a potential therapeutic approach. However, the selection of suitable cells as the source of mitochondria remains controversial. We cultivated endometrial mesenchymal stem cells (EnMSCs) from aged mice and extracted mitochondria from EnMSCs. To improve the quality of oocytes, GV oocytes were supplemented with mitochondria via microinjection. And MII oocytes from aged mice were fertilized by intracytoplasmic sperm injection (ICSI), combining EnMSCs' mitochondrial microinjection. In this study, we found that the mitochondria derived from EnMSCs could significantly improve the quality of aged oocytes. Supplementation with EnMSC mitochondria significantly increased the blastocyst ratio of MII oocytes from aged mice after ICSI. We also found that the birth rate of mitochondria-injected ageing oocytes was significantly increased after embryo transplantation. Our study demonstrates that supplementation with EnMSC-derived mitochondria can improve the quality of oocytes and promote embryo development in ageing mice, which might provide a prospective strategy for clinical treatment.


Subject(s)
Oocytes , Semen , Male , Female , Animals , Mice , Oocytes/metabolism , Mitochondria , Fertilization , Dietary Supplements
19.
Sci Adv ; 8(50): eadd8527, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36516253

ABSTRACT

Recyclable/reversible adhesives have attracted growing attention for sustainability and intelligence but suffer from low adhesion strength and poor durability in complex conditions. Here, we demonstrate an aromatic siloxane adhesive that exploits stimuli-responsive reversible assembly driven by π-π stacking, allowing for elimination and activation of interfacial interactions via infiltration-volatilization of ethanol. The robust cohesive energy from water-insensitive siloxane assembly enables durable strong adhesion (3.5 MPa shear strength on glasses) on diverse surfaces. Long-term adhesion performances are realized in underwater, salt, and acid/alkali solutions (pH 1-14) and at low/high temperatures (-10-90°C). With reversible assembly/disassembly, the adhesive is closed-loop recycled (~100%) and reused over 100 times without adhesion loss. Furthermore, the adhesive has unique combinations of high transparency (~98% in the visible light region of 400-800 nm) and flame retardancy. The experiments and theoretical calculations reveal the corresponding mechanism at the molecular level. This π-π stacking-driven siloxane assembly strategy opens up an avenue for high-performance adhesives with circular life and multifunctional integration.

20.
Clin Transl Med ; 12(11): e1113, 2022 11.
Article in English | MEDLINE | ID: mdl-36394206

ABSTRACT

BACKGROUND: Dysregulation of alternative splicing (AS) induced by serine/arginine-rich proteins has recently been linked to cancer metastasis. Nonetheless, as a member of the serine/arginine-rich protein family, the involvement of SRSF11 in colorectal cancer (CRC) is unknown. METHODS: The TCGA dataset and clinical samples were used to assess SRSF11 expression levels in CRC. For SRSF11, functional experiments were conducted both in vitro and in vivo. RNA-seq technology was used to analyze and screen SRSF11-triggered AS events, which were then confirmed by in vivo UV crosslinking and immunoprecipitation (CLIP) and mini-gene reporter assays. Jalview software was used to determine the preferential binding motif with relation to exon skipping (ES) events. Furthermore, coimmunoprecipitation (Co-IP) and Phospho-tag SDS-PAGE experiments were used to investigate PAK5-mediated phosphorylation regulation on SRSF11, and in vitro kinase experiments validated the interaction. RESULTS: In CRC, SRSF11 was discovered to be overexpressed and associated with a poor prognosis. And SRSF11 played a pro-metastatic role in vitro and in vivo. By screening SRSF11-regulated AS events, we identified the binding motif of SRSF11-triggered splicing-switching of HSPA12A AS, which specifically regulated HSPA12A AS by directly binding to a motif in exon 2. Mechanistically, the HSPA12A transcript with exon 2 retention increased N-cadherin expression by promoting RNA stability. Furthermore, the oncogenic kinase PAK5 phosphorylated SRSF11 at serine 287, protecting it from ubiquitination degradation. CONCLUSIONS: SRSF11 exerts pro-metastatic effects in CRC by inhibiting the AS of HSPA12A pre-RNA. Our findings point to SRSF11-regulated HSPA12A splicing as a novel relationship between SRSF11-regulated splicing and CRC metastasis and suggest a PAK5/SRSF11/HSPA12A axis as a potential therapeutic target and prognostic biomarker in CRC.


Subject(s)
Alternative Splicing , Colorectal Neoplasms , Humans , Alternative Splicing/genetics , Arginine/genetics , Arginine/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , RNA/metabolism , Serine/genetics , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...