Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 443
Filter
1.
Int J Biol Macromol ; : 133509, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960228

ABSTRACT

The development of productive and durable non-precious metal catalysts for the sluggish oxygen evolution reaction (OER) is critical for water splitting. Herein, a novel NiSe-FeOx heterojunction encapsulated in lignin-derived carbon layer (NiSe-FeOx@LC) was synthesized via hydrothermal self-assembly and in-situ pyrolysis. NiSe-FeOx@LC exhibited excellent OER performance with an overpotential of 265 mV at 50 mA·cm-2, a Tafel slope of 83 mV·dec-1, as well as long-term stability. Both experimental and DFT calculation results indicated that the doping of FeOx into NiSe@LC successfully optimized the dual interface structure between NiSe and FeOx, thereby promoted the d-bands orbital hybridization, that facilitated electron transfer. Besides, the carbon coating effectively protected the NiSe-FeOx components from leaching and agglomerating during the reaction. This study provides insight into the significance of lignin-derived carbon-encapsulated metallic catalyst for electrocatalytic OER process.

2.
Science ; 385(6704): 68-74, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963855

ABSTRACT

Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.

3.
J Mol Model ; 30(7): 228, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916778

ABSTRACT

CONTEXT: Conformation generation, also known as molecular unfolding (MU), is a crucial step in structure-based drug design, remaining a challenging combinatorial optimization problem. Quantum annealing (QA) has shown great potential for solving certain combinatorial optimization problems over traditional classical methods such as simulated annealing (SA). However, a recent study showed that a 2000-qubit QA hardware was still unable to outperform SA for the MU problem. Here, we propose the use of quantum-inspired algorithm to solve the MU problem, in order to go beyond traditional SA. We introduce a highly compact phase encoding method which can exponentially reduce the representation space, compared with the previous one-hot encoding method. For benchmarking, we tested this new approach on the public QM9 dataset generated by density functional theory (DFT). The root-mean-square deviation between the conformation determined by our approach and DFT is negligible (less than about 0.5Å), which underpins the validity of our approach. Furthermore, the median time-to-target metric can be reduced by a factor of five compared to SA. Additionally, we demonstrate a simulation experiment by MindQuantum using quantum approximate optimization algorithm (QAOA) to reach optimal results. These results indicate that quantum-inspired algorithms can be applied to solve practical problems even before quantum hardware becomes mature. METHODS: The objective function of MU is defined as the sum of all internal distances between atoms in the molecule, which is a high-order unconstrained binary optimization (HUBO) problem. The degree of freedom of variables is discretized and encoded with binary variables by the phase encoding method. We employ the quantum-inspired simulated bifurcation algorithm for optimization. The public QM9 dataset is generated by DFT. The simulation experiment of quantum computation is implemented by MindQuantum using QAOA.

4.
Chin Med ; 19(1): 85, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877519

ABSTRACT

BACKGROUND: Liguzinediol (Lig) has emerged as a promising candidate for mitigating Doxorubicin (DOX)-induced cardiotoxicity, a significant limitation in the clinical application of this widely used antineoplastic drug known for its efficacy. This study aimed to explore the effects and potential mechanisms underlying Lig's protective role against DOX-induced cardiotoxicity. METHODS: C57BL/6 mice were treated with DOX. Cardiac function changes were observed by echocardiography. Cardiac structure changes were observed by HE and Masson staining. Immunofluorescence was applied to visualize the cardiomyocyte apoptosis. Western blotting was used to detect the expression levels of AMP-activated protein kinase (AMPK), sirtuin 3 (SIRT3), Caspase-3 and gasdermin E N-terminal fragment (GSDME-N). These experiments confirmed that Lig had an ameliorative effect on DOX-induced cardiotoxicity in mice. RESULTS: The results demonstrated that Lig effectively countered myocardial oxidative stress by modulating intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Lig reduced levels of creatine kinase (CK) and lactate dehydrogenase (LDH), while ameliorating histopathological changes and improving electrocardiogram profiles in vivo. Furthermore, the study revealed that Lig activated the AMPK/SIRT3 pathway, thereby enhancing mitochondrial function and attenuating myocardial cell apoptosis. In experiments with H9C2 cells treated with DOX, co-administration of the AMPK inhibitor compound C (CC) led to a significant increase in intracellular ROS levels. Lig intervention reversed these effects, along with the downregulation of GSDME-N, interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), suggesting a potential role of Lig in mitigating Caspase-3/GSDME-mediated pyroptosis. CONCLUSION: The findings of this study suggest that Lig effectively alleviates DOX-induced cardiotoxicity through the activation of the AMPK/SIRT3 pathway, thereby presenting itself as a natural product with therapeutic potential for preventing DOX-associated cardiotoxicity. This novel approach may pave the way for the development of alternative strategies in the clinical management of DOX-induced cardiac complications.

5.
Oral Health Prev Dent ; 22: 211-221, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864380

ABSTRACT

PURPOSE: To evaluate the efficacy of the adjunctive use of tea tree oil (TTO) for dental plaque control and nonsurgical periodontal treatment (NSPT). MATERIALS AND METHODS: Three electronic databases were searched from 2003. The reference lists of the included articles and relevant reviews were also manually searched. Randomised controlled trials reporting the clinical outcomes of the topical use of TTO as an adjunct to daily oral hygiene or scaling and root planing (SRP) were included. Regarding the use of TTO as an adjunctive to daily oral hygiene, the primary outcome was plaque index (PI) reduction. Regarding the use of TTO as an adjunctive to SRP, probing pocket depth (PPD) reduction and clinical attachment level (CAL) gain were the primary outcomes. The secondary outcomes were adverse events. RESULTS: Eleven studies were included for qualitative analysis, 9 studies were included for quantitative analysis, and 6 studies were included to examine the application of TTO mouthwash as an adjunctive to daily oral hygiene. In addition, three studies were included to analyse the subgingival use of TTO adjunctive to SRP at selected sites. The results indicated a nonsignificant improvement in PI reduction in the TTO mouthwash group compared with placebo. The incidence of adverse events was statistically significantly greater in the CHX group than in the TTO group. For subgingival use of TTO adjunctive to SRP, beneficial effects were observed in the TTO group compared with SRP alone in terms of PPD and CAL at both three and six months post-treatment. However, an unpleasant taste was reported in three out of four studies. CONCLUSION: There is a lack of strong evidence to support the beneficial effects of TTO. Studies with larger sample sizes and standardised evaluation criteria are needed to further demonstrate the clinical relevance of TTO.


Subject(s)
Dental Plaque , Dental Scaling , Mouthwashes , Randomized Controlled Trials as Topic , Tea Tree Oil , Humans , Tea Tree Oil/therapeutic use , Tea Tree Oil/administration & dosage , Mouthwashes/therapeutic use , Dental Plaque/prevention & control , Oral Hygiene/education , Root Planing , Dental Plaque Index , Combined Modality Therapy , Treatment Outcome , Phytotherapy/methods , Periodontal Diseases/therapy , Periodontal Diseases/drug therapy
6.
Adv Sci (Weinh) ; : e2308443, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922803

ABSTRACT

Tissue engineering has demonstrated its efficacy in promoting tissue regeneration, and extensive research has explored its application in rotator cuff (RC) tears. However, there remains a paucity of research translating from bench to clinic. A key challenge in RC repair is the healing of tendon-bone interface (TBI), for which bioactive materials suitable for interface repair are still lacking. The umbilical cord (UC), which serves as a vital repository of bioactive components in nature, is emerging as an important source of tissue engineering materials. A minimally manipulated approach is used to fabricate UC scaffolds that retain a wealth of bioactive components and cytokines. The scaffold demonstrates the ability to modulate the TBI healing microenvironment by facilitating cell proliferation, migration, suppressing inflammation, and inducing chondrogenic differentiation. This foundation sets the stage for in vivo validation and clinical translation. Following implantation of UC scaffolds in the canine model, comprehensive assessments, including MRI and histological analysis confirm their efficacy in inducing TBI reconstruction. Encouraging short-term clinical results further suggest the ability of UC scaffolds to effectively enhance RC repair. This investigation explores the mechanisms underlying the promotion of TBI repair by UC scaffolds, providing key insights for clinical application and translational research.

7.
ACS Nano ; 18(26): 17326-17338, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887893

ABSTRACT

As a promising anode material, silicon-carbon composites encounter great challenges related to internal stress release and contact between the composites during lithiation. These issues lead to material degradation and concomitantly rapid capacity decline. Here, we report a type of shell-shell silicon-carbon (SS-Si/C) composite, which consists of a carbon shell tightly coated with a silicon shell. The mechanical analysis unveils that the dominant inward expansion of the Si shell is achieved through the synergistic effect of the outer carbon shell and the inner hollow structure. Benefiting from the well-tailored shell-shell structure, the SS-Si/C anode exhibits exceptional performance, boasting a high specific capacity (1690.3 mA h g-1 after 550 cycles at 0.5 A g-1), a high areal capacity (2.05 mA h cm-2 after more than 400 cycles at 0.5 mA cm-2), and an extended cycling life (1055.6 mA h g-1 after 1000 cycles at 8 A g-1), far exceeding commercially available Si/C anodes. Using the well-designed SS-Si/C anode, full cells assembled with LiCoO2 (LCO) or LiFePO4 (LFP) cathodes achieve favorable rate capability and cyclic stability. Notably, at a high rate of 6 C (1 C = 170 and 270 mA g-1 for LFP and LCO, respectively), these full cells deliver high specific capacities of 79.5 mA h g-1 and 64.9 mA h g-1 when using LCO and LFP, respectively, demonstrating the potential of SS-Si/C anodes for practical applications. The straightforward and safe synthesis method in this work enables the rational design of hollow structures with distinct properties.

8.
Plant Physiol Biochem ; 212: 108781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820914

ABSTRACT

N6-methyladenosine (m6A), a nucleotide modification that is frequently seen in RNA, plays a crucial role in plant growth, development and stress resistance. However, the m6A regulatory machinery in switchgrass (Panicum virgatum L.), a model plant for cellulose-to-ethanol conversion, remains largely unknown. In this study, we identified 57 candidate genes involved in m6A-regulation in the switchgrass genome, and analyzed their chromosomal distribution, evolutionary relationships, and functions. Notably, we observed distinct gene expression patterns under salt and drought stress, with salt stress inducing writer and eraser genes, alongside drought stress predominantly affecting reader genes. Additionally, we knocked out PvALKBH10, an m6A demethylase gene, via CRISPR/Cas9 and found its potential function in controlling flowering time. This study provides insight into the genomic organization and evolutionary features of m6A-associated putative genes in switchgrass, and therefore serves as the basis for further functional studies.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Panicum , Plant Proteins , Panicum/genetics , Panicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Genes, Plant , Multigene Family
9.
Front Psychiatry ; 15: 1378438, 2024.
Article in English | MEDLINE | ID: mdl-38721612

ABSTRACT

Background: Recent studies have shown that regular physical activity (PA) can positively influence mobile phone addiction (MPA) behaviors in college students. However, it remains unknown whether this effect is mediated by other factors. Evidence suggests that resilience and interaction anxiousness may be candidate mediators that partly explain the positive effect of PA on MPA. This study aims to explore the impact of PA on MPA through a mediation model, and the role of resilience and interaction anxiousness in this relationship. Methods: The participants were 590 college students (272 males; mean age = 19.67) who completed a psychosocial battery, including the international physical activity questionnaire-short form (IPAQ-SF), the connor - davidson resilience scale (CD-RISC), the interaction anxiousness scale (IAS), and the mobile phone addiction index (MPAI). Correlations of variables were computed using Pearson's test. Mediation models were tested using SPSSS PROCESS macro with the regression bootstrapping method. Results: PA were negatively associated with MPA behavior (r=-.21, p < 0.01). Resilience and interaction anxiousness moderated the relationship between PA and MPA. More importantly, PA could also influence MPA through the chain-mediating effects of resilience and interaction anxiousness. Conclusion: It is essential to improve resilience and reduce interaction anxiousness to reduce MPA problems through regular engagement in PA among college students.

10.
Bioact Mater ; 37: 477-492, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698919

ABSTRACT

Degradable rotator cuff patches, followed over five years, have been observed to exhibit high re-tear rates exceeding 50%, which is attributed to the inability of degradable polymers alone to restore the post-rotator cuff tear (RCT) inflammatory niche. Herein, poly(ester-ferulic acid-urethane)urea (PEFUU) was developed, featuring prolonged anti-inflammatory functionality, achieved by the integration of ferulic acid (FA) into the polyurethane repeating units. PEFUU stably releases FA in vitro, reversing the inflammatory niche produced by M1 macrophages and restoring the directed differentiation of stem cells. Utilizing PEFUU, hierarchical composite nanofiber patch (HCNP) was fabricated, simulating the natural microstructure of the tendon-to-bone interface with an aligned-random alignment. The incorporation of enzymatic hydrolysate derived from decellularized Wharton jelly tissue into the random layer could further enhance cartilage regeneration at the tendon-to-bone interface. Via rat RCT repairing model, HCNP possessing prolonged anti-inflammatory properties uniquely facilitated physiological healing at the tendon-to-bone interface's microstructure. The alignment of fibers was restored, and histologically, the characteristic tripartite distribution of collagen I - collagen II - collagen I was achieved. This study offers a universal approach to the functionalization of degradable polymers and provides a foundational reference for their future applications in promoting the in vivo regeneration of musculoskeletal tissues.

11.
Opt Lett ; 49(9): 2417-2420, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691733

ABSTRACT

Soliton complexes highlight the particle-like dynamics of dissipative pulses. However, simple and reliable manipulation of bound solitons remains challenging, particularly for all-polarization-maintaining (PM) configurations that are free from random polarization perturbations. Here, we report controllable pulse patterns of robustly coexisting dichromatic soliton complexes in an all-PM fiber laser based on a twistable tapered-fiber filter. According to the twist angle, dichromatic pulses are switched between different patterns, and components at each wavelength can be independently manipulated, extending encodings from the time to the frequency domain. To the best of our knowledge, it is the first experimental demonstration of dual-wavelength soliton complexes that different pulse patterns coexist at separated wavebands.

12.
Opt Lett ; 49(9): 2433-2436, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691737

ABSTRACT

We present for the first time, to the best of our knowledge, the pump-power-controlled, all-polarization-maintaining (all-PM), all-fiber configured, wavelength-tunable mode-locked fiber laser in the L-band (1565 to 1625 nm). A tuning range over 20 nm (1568.2  to 1588.9 nm) is attained simply by varying the pump power between 45 and 115 mW. Our work represents the first demonstration of wavelength tuning in all-PM configured nonlinear polarization evolution (NPE) lasers. The non-mechanical and electrically controllable tuning method offers ease of use and cost efficiency within an advanced all-PM, all-fiber design, indicating promising adaptability to diverse wavelength bands.

13.
Small ; : e2401429, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808805

ABSTRACT

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

14.
Comput Biol Med ; 176: 108539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728992

ABSTRACT

Nested entities and relationship extraction are two tasks for analysis of electronic medical records. However, most of existing medical information extraction models consider these tasks separately, resulting in a lack of consistency between them. In this paper, we propose a joint medical entity-relation extraction model with progressive recognition and targeted assignment (PRTA). Entities and relations share the information of sequence and word embedding layers in the joint decoding stage. They are trained simultaneously and realize information interaction by updating the shared parameters. Specifically, we design a compound triangle strategy for the nested entity recognition and an adaptive multi-space interactive strategy for relationship extraction. Then, we construct a parameter-shared information space based on semantic continuity to decode entities and relationships. Extensive experiments were conducted on the Private Liver Disease Dataset (PLDD) provided by Beijing Friendship Hospital of Capital Medical University and public datasets (NYT, ACE04 and ACE05). The results show that our method outperforms existing SOTA methods in most indicators, and effectively handles nested entities and overlapping relationships.


Subject(s)
Electronic Health Records , Humans , Data Mining/methods , Algorithms , Databases, Factual , Liver Diseases
15.
Mater Horiz ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742392

ABSTRACT

Polyurethane (PU) foams, pivotal in modern life, face challenges suh as fire hazards and environmental waste burdens. The current reliance of PU on potentially ecotoxic halogen-/phosphorus-based flame retardants impedes large-scale material recycling. Here, our demonstrated controllable catalytic cracking strategy, using cesium salts, enables self-evolving recycling of flame-retardant PU. The incorporation of cesium citrates facilitates efficient urethane bond cleavage at low temperatures (160 °C), promoting effective recycling, while encouraging pyrolytic rearrangement of isocyanates into char at high temperatures (300 °C) for enhanced PU fire safety. Even in the absence of halogen/phosphorus components, this foam exhibits a substantial increase in ignition time (+258.8%) and a significant reduction in total smoke release (-79%). This flame-retardant foam can be easily recycled into high-quality polyol under mild conditions, 60 °C lower than that for the pure foam. Notably, the trace amounts of cesium gathered in recycled polyols stimulate the regenerated PU to undergo self-evolution, improving both flame-retardancy and mechanical properties. Our controllable catalytic cracking strategy paves the way for the self-evolutionary recycling of high-performance firefighting materials.

16.
Hum Vaccin Immunother ; 20(1): 2345943, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38757492

ABSTRACT

Dental caries is a prevalent oral disease that mainly results from Streptococcus mutans. Susceptibility to S. mutans decreased rapidly after weaning in a well-known rat model. However, owing to the lack of time to establish protective immunity ahead of challenge, the weaning rat model is suboptimal for assessing prophylactic vaccines against S. mutans infection. In this study, we found that, in adult rats, S. mutans cultured under air-restricted conditions showed dramatically increased colonization efficacy and accelerated development of dental caries compared with those cultured under air-unrestricted conditions. We propose that S. mutans cultured under air-restricted conditions can be used to develop an optimal caries model, especially for the evaluation of prophylactic efficacy against S. mutans. Therefore, we used the anti-caries vaccine, KFD2-rPAc, to reevaluate the protection against the challenge of S. mutans. In immunized rats, rPAc-specific protective antibodies were robustly elicited by KFD2-rPAc before the challenge. In addition to inhibiting the initial and long-term colonization of S. mutans in vivo, KFD2-rPAc immunization showed an 83% inhibitory efficacy against the development of caries, similar to that previously evaluated in a weaning rat model. These results demonstrate that culturing under air-restricted conditions can promote S. mutans infection in adult rats, thereby helping establish a rat infection model to evaluate the prophylactic efficacy of vaccines and anti-caries drugs.


Subject(s)
Antibodies, Bacterial , Dental Caries , Disease Models, Animal , Streptococcus mutans , Animals , Dental Caries/prevention & control , Dental Caries/microbiology , Dental Caries/immunology , Streptococcus mutans/immunology , Rats , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Female , Rats, Sprague-Dawley
17.
Trials ; 25(1): 335, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773529

ABSTRACT

BACKGROUND: With suicide as a leading cause of death, the issue of children and adolescent suicide risks is in the spotlight today. To empower teachers in primary and secondary schools to serve as gatekeepers and to ensure the safety of children and adolescents, the systematically tailored and localized Life Gatekeeper suicide prevention program was designed for Chinese schools. OBJECTIVE: With the ultimate goal of preventing child and adolescent suicide, we aim to outline a research protocol for examining outcomes of the recently created standardized school-based Life Gatekeeper program in reducing teachers' stigma, increasing their knowledge, willingness to intervene, and perceived competence. METHODS: Participants will be recruited from eligible primary and secondary schools. Cluster sampling will be used to randomly assign each school to either the intervention group or the control group. The primary outcomes are stigma against suicide, suicide literacy, perceived competence, and willingness to intervene with suicidal individuals, which will be measured using the Stigma of Suicide Scale, the Literacy of Suicide Scale, and the Willingness to Intervene Against Suicide Questionnaire, respectively. Measurements will be taken at four time points, including pre-intervention, immediately after the intervention, 6-month follow-up, and 1-year follow-up. CONCLUSIONS: The current study features innovative implementation in the real world, by using a randomized controlled trial design to examine the effectiveness of a school-based gatekeeper program among primary and secondary school teachers, following a sequence of defined and refined steps. The research will also investigate the viability of a school-based gatekeeper program for primary and secondary school teachers that could be quickly and inexpensively implemented in a large number of schools.


Subject(s)
Health Knowledge, Attitudes, Practice , School Health Services , School Teachers , Social Stigma , Suicide Prevention , Teacher Training , Humans , China , Adolescent , Child , School Teachers/psychology , Teacher Training/methods , Randomized Controlled Trials as Topic , Suicide/psychology , Time Factors , Male , Female , Adolescent Behavior , School Mental Health Services , Program Evaluation , Child Behavior
18.
Heliyon ; 10(10): e30594, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774318

ABSTRACT

Aim: Disturbed intestinal microbiota has been implicated in the inflammatory microenvironment of the colon, which usually results in ulcerative colitis (UC). Given the limitations of these drugs, it is important to explore alternative means of protecting the gut health from UC. This study aimed to investigate the potential of polysaccharides as beneficial nutrients in the regulation of the gut microbiota, which determines the inflammatory microenvironment of the colon. Materials and methods: Mice were treated with dextran sulfate sodium (DSS) to evaluate the effects and mechanisms of Lycium barbarum polysaccharide (LBP) in remodeling the inflammatory microenvironment and improving gut health. Body weight and disease activity indices were monitored daily. Hematoxylin and eosin staining was used to analyze colon dynamics. The levels of inflammatory indicators and expression of MUC-2, claudin-1, ZO-1, and G-protein-coupled receptor 5 (TGR5) were determined using assay kits and immunohistochemistry, respectively. 16S rRNA high-throughput sequencing of the intestinal microbiota and liquid chromatography-tandem mass spectrometry for related bile acids were used. Results: LBP significantly improved the colonic tissue structure by upregulating MUC-2, claudin-1, and ZO-1 protein expression. The bacterial genus Dubosiella was dominant in healthy mice, but significantly decreased in mice treated with DSS. LBP rehabilitated Dubosiella in the sick guts of DSS mice to a level close to that of healthy mice. The levels of other beneficial bacterial genera Akkermansia and Bifidobacterium were also increased, whereas those of the harmful bacterial genera Turicibacter, Clostridium_sensu_stricto_1, Escherichia-Shigella, and Faecalibaculum decreased. The activity of beneficial bacteria promoted the bile acids lithocholic and deoxycholic acids in mice with UC, which improved the gut barrier function through the upregulation of TGR5. Conclusion: The inflammatory microenvironment in the gut is determined by the balance of the gut microbiota. LBP showed great potential as a beneficial nutrient for rehabilitating Dubosiella which is dominant in the gut of healthy mice. Nutrient-related LBP may play an important role in gut health management.

19.
Plant Physiol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805210

ABSTRACT

Under phosphorus (P) deficiency, white lupin (Lupinus albus L.) forms specialized root structure, called cluster root (CR), to improve soil exploration and nutrient acquisition. Sugar signaling is thought to play a vital role in the development of CR. Trehalose and its associated metabolites are the essential sugar signal molecules that link growth and development to carbon metabolism in plants, however, their roles in the control of CR are still unclear. Here, we investigated the function of the trehalose metabolism pathway by pharmacological and genetic manipulation of the activity of trehalase in white lupin, the only enzyme that degrades trehalose into glucose. Under P deficiency, validamycin A treatment, which inhibits trehalase, led to the accumulation of trehalose and promoted the formation of CR with enhanced organic acid production, whereas overexpression of the white lupin TREHALASE1 (LaTRE1) led to decreased trehalose levels, lateral rootlet density, and organic acid production. Transcriptomic and virus-induced gene silencing (VIGS) results revealed that LaTRE1 negatively regulates the formation of CRs, at least partially, by the suppression of LaLBD16, whose putative ortholog in Arabidopsis (Arabidopsis thaliana) acts downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Overall, our findings provide an association between the trehalose metabolism gene LaTRE1 and CR formation and function with respect to organic acid production in white lupin under P deficiency.

20.
Adv Sci (Weinh) ; 11(25): e2402915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641884

ABSTRACT

The silicon (Si) anode is prone to forming a high electric field gradient and concentration gradient on the electrode surface under high-rate conditions, which may destroy the surface structure and decrease cycling stability. In this study, a ferroelectric (BaTiO3) interlayer and field polarization treatment are introduced to set up a built-in field, which optimizes the transport mechanisms of Li+ in solid and liquid phases and thus enhances the rate performance and cycling stability of Si anodes. Also, a fast discharging and slow charging phenomenon is observed in a half-cell with a high reversible capacity of 1500.8 mAh g-1 when controlling the polarization direction of the interlayer, which means a fast charging and slow discharging property in a full battery and thus is valuable for potential applications in commercial batteries. Simulation results demonstrated that the built-in field plays a key role in regulating the Li+ concentration distribution in the electrolyte and the Li+ diffusion behavior inside particles, leading to more uniform Li+ diffusion from local high-concentration sites to surrounding regions. The assembled lithium-ion battery with a BaTiO3 interlayer exhibited superior electrochemical performance and long-term cycling life (915.6 mAh g-1 after 300 cycles at a high current density of 4.2 A g-1). The significance of this research lies in exploring a new approach to improve the performance of lithium-ion batteries and providing new ideas and pathways for addressing the challenges faced by Si-based anodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...