Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(45): 42375-42384, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31647866

ABSTRACT

A methodology was developed to design superior sorbents of oxoanions. To integrate the high efficiency of chemisorption, selectivity, and recyclability into one sorbent, understanding the nature of oxoanions-sorbent interactions and the structural evolution of the sorbents is essential. Three cationic Ag(I) coordination polymers (CPs) are synthesized for dichromate (Cr2O72-) removal, and three distinct oxoanion-exchange mechanisms are identified, namely, the replacement, breath, and reconstruction processes, depending on the degree of framework distortion induced by the dichromate-CP interactions. The single crystal to single crystal transformation during the oxoanion exchange has been investigated by using single-crystal X-ray diffraction and energy-dispersive X-ray microanalysis. The replacement process, due to a weak chemisorption, shows excellent recyclability at the cost of reduction of efficiency and selectivity of adsorption. The reconstruction process may achieve a high efficiency and selectivity, but it loses recyclability. Due to the formation of a Ag-O(dichromate) bond and the breathing effect of the framework, the sorbent with the breath mechanism shows both superior efficiency and high recyclability in dichromate removal. The study of perrhenate (ReO4-) removal using the same CPs demonstrates that one CP performing the reconstruction process during dichromate removal turns to the breath process in removal of perrhenate anions. These results of mechanism-property correlation provide an insight into improvement of the methodology to fabricate a superior CP sorbent for oxoanion removal.

2.
Opt Express ; 26(16): 20450-20458, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119355

ABSTRACT

We propose and experimentally demonstrate wideband and continuously tunable fractional-order photonic Hilbert transformers (FrHT). These are realized by a single apodized planar Bragg grating within a high-birefringence planar substrate. The fractional order of the FrHT is continuously tuned and precisely controlled by changing the polarization state of the input light. The experimental characterization demonstrates an operating bandwidth up to 120 GHz with amplitude ripples below 3 dB. The optical phase shift response is directly measured to verify the proposed tuning property, demonstrating transform orders of around 1, 0.7, and 0.5. This approach is simple, stable, and compact compared to other existing methods and has great potential in the fields of ultrafast all-optical signal processing.

3.
ACS Appl Mater Interfaces ; 9(8): 7202-7208, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28169514

ABSTRACT

To avoid the instability and inefficiency for anion-exchange resins and layered double-hydroxides materials, we present herein a flexible coordination network [Ag(L243)](NO3)(H2O)(CH3CN) (L243 = 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole) with superefficient trapping capacity for permanganate, as a group-7 oxoanion model for radiotoxic pertechnetate pollutant. Furthermore, a high-throughput screening strategy has been developed based on concentration-gradient design principle to ascertain the process and mechanism for anion exchange. Significantly, a series of intermediates can be successfully isolated as the qualified crystals for single-crystal X-ray diffraction. The result evidently indicates that such a dynamic material will show remarkable breathing effect of the three-dimensional host framework upon anion exchange, which mostly facilitates the anion trapping process. This established methodology will provide a general strategy to discover the internal secrets of complicated solid-state reactions in crystals at the molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL
...