Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Steroids ; 207: 109434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710261

ABSTRACT

Steroid myopathy is a non-inflammatory toxic myopathy that primarily affects the proximal muscles of the lower limbs. Due to its non-specific symptoms, it is often overshadowed by patients' underlying conditions. Prolonged or high-dosage use of glucocorticoids leads to a gradual decline in muscle mass. There are no tools available to identify the course of steroid myopathy before the patient displays substantial clinical symptoms. In this study, we investigated individuals with nephrotic syndrome receiving prednisone who underwent muscle ultrasound to obtain cross-sectional and longitudinal pictures of three major proximal muscles in the lower limbs: the vastus lateralis, tibialis anterior, and medial gastrocnemius muscles. Our findings revealed that grip strength was impaired in the prednisolone group, creatine kinase levels were reduced within the normal range; echo intensity of the vastus lateralis and medial gastrocnemius muscles was enhanced, the pennation angle was reduced, and the tibialis anterior muscle exhibited increased echo intensity and decreased thickness. The total dose of prednisone and the total duration of treatment impacted the degree of muscle damage. Our findings indicate that muscle ultrasound effectively monitors muscle structure changes in steroid myopathy. Combining clinical symptoms, serum creatine kinase levels, and grip strength improves the accuracy of muscle injury evaluation.


Subject(s)
Muscle, Skeletal , Nephrotic Syndrome , Prednisone , Ultrasonography , Humans , Male , Prednisone/adverse effects , Prednisone/administration & dosage , Female , Adult , Middle Aged , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/diagnostic imaging , Nephrotic Syndrome/chemically induced , Muscle, Skeletal/drug effects , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/chemically induced , Muscular Diseases/diagnostic imaging , Muscular Diseases/pathology
2.
BMC Geriatr ; 24(1): 407, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714958

ABSTRACT

BACKGROUND: Quality of life of osteoporosis patients had caused widespread concern, due to high incidence and difficulty to cure. Scale specifics for osteoporosis and suitable for Chinese cultural background lacked. This study aimed to develop an osteoporosis scale in Quality of Life Instruments for Chronic Diseases system, namely QLICD-OS (V2.0). METHODS: Procedural decision-making approach of nominal group, focus group and modular approach were adopted. Our scale was developed based on experience of establishing scales at home and abroad. In this study, Quality of life measurements were performed on 127 osteoporosis patients before and after treatment to evaluate the psychometric properties. Validity was evaluated by qualitative analysis, item-domain correlation analysis, multi-scaling analysis and factor analysis; the SF-36 scale was used as criterion to carry out correlation analysis for criterion-related validity. The reliability was evaluated by the internal consistency coefficients Cronbach's α, test-retest reliability Pearson correlation r. Paired t-tests were performed on data of ​​the scale before and after treatment, with Standardized Response Mean (SRM) being calculated to evaluate the responsiveness. RESULTS: The QLICD-OS, composed of a general module (28 items) and an osteoporosis-specific module (14 items), had good content validity. Correlation analysis and factor analysis confirmed the construct, with the item having a strong correlation (most > 0.40) with its own domains/principle components, and a weak correlation (< 0.40) with other domains/principle components. Correlation coefficient between the similar domains of QLICD-OS and SF-36 showed reasonable criterion-related validity, with all coefficients r being greater than 0.40 exception of physical function of SF-36 and physical domain of QLICD-OS (0.24). Internal consistency reliability of QLICD-OS in all domains was greater than 0.7 except the specific module. The test-retest reliability coefficients (Pearson r) in all domains and overall score are higher than 0.80. Score changes after treatment were statistically significant, with SRM ranging from 0.35 to 0.79, indicating that QLICD-OS could be rated as medium responsiveness. CONCLUSION: As the first osteoporosis-specific quality of life scale developed by the modular approach in China, the QLICD-OS showed good reliability, validity and medium responsiveness, and could be used to measure quality of life in osteoporosis patients.


Subject(s)
Osteoporosis , Quality of Life , Humans , Quality of Life/psychology , Female , Male , Osteoporosis/psychology , Osteoporosis/diagnosis , Aged , Chronic Disease , Middle Aged , Surveys and Questionnaires/standards , Reproducibility of Results , Psychometrics/methods , Psychometrics/instrumentation , Psychometrics/standards , Aged, 80 and over
3.
Front Pharmacol ; 15: 1348280, 2024.
Article in English | MEDLINE | ID: mdl-38698813

ABSTRACT

Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.

4.
BMC Public Health ; 24(1): 1235, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704531

ABSTRACT

BACKGROUND: Periodontitis represents the foremost oral condition in young men, strongly correlated with socioeconomic elements and oral health behaviors. This research aimed to assess the prevalence of periodontitis and associated associations with socio-demographics and oral health practices for subsequent Hazard Ratio (HR) estimation. METHODS: A total of 46,476 young men were recruited to the study between August 2022 and October 2023. A questionnaire on socio-demographic factors and oral health-related behaviors related to periodontitis was completed. The standard procedure was used for oral examination. Logistic regression and hazard ratios were used to estimate the influencing factors, whereas the nomogram was used to predict the risk of periodontitis in young men. RESULTS: A total of 46,476 young men were surveyed and completed the questionnaire. The overall prevalence of periodontitis among young men was 1.74%. Out of these, 1.7% had mild periodontitis and 0.6% had moderate periodontitis. Age and dental calculus were important factors in the periodontal health of young men. This nomogram, which includes 7 easily obtainable clinical characteristics routinely collected during periodontitis risk assessment, provides clinicians with a user-friendly tool to assess the risk of periodontal disease in young men. CONCLUSIONS: Regular dental prophylaxis is crucial for young men to maintain their gingival health and prevent the onset of periodontitis. Dental calculus plays a prominent role in this matter, as it serves as a significant contributing factor.


Subject(s)
Periodontitis , Humans , Male , Periodontitis/epidemiology , Cross-Sectional Studies , China/epidemiology , Young Adult , Prevalence , Adult , Risk Factors , Surveys and Questionnaires , Adolescent , Nomograms , Oral Health/statistics & numerical data , Socioeconomic Factors
5.
Front Oncol ; 14: 1324392, 2024.
Article in English | MEDLINE | ID: mdl-38567153

ABSTRACT

Background: Significant advancements in systemic treatment for hepatocellular carcinoma have been made in recent years. However, the optimal timing of systemic treatment before or after surgery remains unknown. This study aims to evaluate the impact of sequencing systemic treatment and surgical intervention on the long-term prognosis of hepatocellular carcinoma patients. Methods: In our study, we analyzed data from patients diagnosed with primary liver cancer (2004-2015) extracted from the SEER database. Patients who underwent both systemic treatment and surgical intervention were selected, divided into preoperative and postoperative systemic therapy groups. The primary endpoint of the study is overall survival(OS), and the secondary endpoint is cancer-specific survival (CSS). Propensity score matching (PSM) reduced the influence of confounding factors, while Kaplan-Meier curves and a multivariable Cox proportional hazards model accounted for variables during survival analysis. Results: A total of 1918 eligible HCC patients were included, with 1406 cases in the preoperative systemic treatment group and 512 cases in the postoperative systemic treatment group. Survival analysis showed that both the preoperative group demonstrated longer median overall survival (OS) and median cancer-specific survival (CSS) before and after PSM. After conducting multivariate COX regression analysis with stepwise adjustment of input variables, the postoperative systemic treatment group continued to exhibit a higher risk of all-cause mortality (HR: 1.84, 95% CI: 1.55-2.1) and cancer-specific mortality (HR: 2.10, 95% CI: 1.73-2.54). Subgroup analysis indicated consistent results for overall survival (OS) across different subgroups. Conclusions: Hepatocellular carcinoma patients from the SEER database who received preoperative systemic therapy had superior OS and CSS compared to those who received postoperative systemic therapy.

6.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612925

ABSTRACT

Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.


Subject(s)
Populus , Haploidy , Phylogeny , Populus/genetics , Ethylenes
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 753-762, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38602002

ABSTRACT

Adhesion molecules play critical roles in maintaining the structural integrity of the airway epithelium in airways under stress. Previously, we reported that catenin alpha-like 1 (CTNNAL1) is downregulated in an asthma animal model and upregulated at the edge of human bronchial epithelial cells (HBECs) after ozone stress. In this work, we explore the potential role of CTNNAL1 in the structural adhesion of HBECs and its possible mechanism. We construct a CTNNAL1 ‒/‒ mouse model with CTNNAL1-RNAi recombinant adeno-associated virus (AAV) in the lung and a CTNNAL1-silencing cell line stably transfected with CTNNAL1-siRNA recombinant plasmids. Hematoxylin and eosin (HE) staining reveals that CTNNAL1 ‒/‒ mice have denuded epithelial cells and structural damage to the airway. Silencing of CTNNAL1 in HBECs inhibits cell proliferation and weakens extracellular matrix adhesion and intercellular adhesion, possibly through the action of the cytoskeleton. We also find that the expressions of the structural adhesion-related molecules E-cadherin, integrin ß1, and integrin ß4 are significantly decreased in ozone-treated cells than in vector control cells. In addition, our results show that the expression levels of RhoA/ROCK1 are decreased after CTNNAL1 silencing. Treatment with Y27632, a ROCK inhibitor, abolished the expressions of adhesion molecules induced by ozone in CTNNAL1-overexpressing HBECs. Overall, the findings of the present study suggest that CTNNAL1 plays a critical role in maintaining the structural integrity of the airway epithelium under ozone challenge, and is associated with epithelial cytoskeleton dynamics and the expressions of adhesion-related molecules via the RhoA/ROCK1 pathway.


Subject(s)
Bronchi , Epithelial Cells , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Animals , Humans , Mice , alpha Catenin/metabolism , alpha Catenin/genetics , Bronchi/cytology , Bronchi/metabolism , Cell Adhesion , Cell Line , Cell Proliferation , Epithelial Cells/metabolism , Ozone , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/metabolism
8.
Cancer Immunol Immunother ; 73(6): 107, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642109

ABSTRACT

BACKGROUND: Treatment of metastatic renal cell carcinoma (mRCC) remains a challenge worldwide. Here, we introduced a phase I trial of autologous RAK cell therapy in patients with mRCC whose cancers progressed after prior systemic therapy. Although RAK cells have been used in clinic for many years, there has been no dose-escalation study to demonstrate its safety and efficacy. METHODS: We conducted a phase I trial with a 3 + 3 dose-escalation design to investigate the dose-related safety and efficacy of RAK cells in patients with mRCC whose cancers have failed to response to systemic therapy (ChiCTR1900021334). RESULTS: Autologous RAK cells, primarily composed of CD8+ T and NKT cells, were infused intravenously to patients at a dose of 5 × 109, 1 × 1010 or 1.5 × 1010 cells every 28 days per cycle. Our study demonstrated general safety of RAK cells in a total of 12 patients. Four patients (33.3%) showed tumor shrinkage, two of them achieved durable partial responses. Peripheral blood analysis showed a significant increase in absolute counts of CD3+ and CD8+ T cells after infusion, with a greater fold change observed in naive CD8+ T cells (CD8+CD45RA+). Higher peak values of IL-2 and IFN-γ were observed in responders after RAK infusion. CONCLUSION: This study suggests that autologous RAK cell immunotherapy is safe and has clinical activity in previously treated mRCC patients. The improvement in peripheral blood immune profiling after RAK cell infusion highlights its potential as a cancer treatment. Further investigation is necessary to understand its clinical utility.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Kidney Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Interleukin-2/therapeutic use , Immunotherapy , Adjuvants, Immunologic
9.
Environ Pollut ; 347: 123731, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458519

ABSTRACT

Bisphenol A (BPA), an ingredient in consumer products, has been suggested that it can interfere with bone development and maintenance, whereas the molecule mechanism remains unclear. The objective of this study is to investigate the effect of BPA on early bone differentiation and metabolism, and its potential molecule mechanism by employing hFOB1.19 cell as an in vitro model, as well as larval zebrafish as an in vivo model. The in vitro experiments indicated that BPA decreased cell viability, inhibited osteogenic activity (such as ALP, RUNX2), increased ROS production, upregulated transcriptional or protein levels of apoptosis-related molecules (such as Caspase 3, Caspase 9), while suppressed transcriptional or protein levels of pyroptosis-specific markers (TNF-α, TNF-ß, IL-1ß, ASC, Caspase 1, and GSDMD). Moreover, the evidences from in vivo model demonstrated that exposure to BPA distinctly disrupted pharyngeal cartilage, craniofacial bone development, and retarded bone mineralization. The transcriptional level of bone development-related genes (bmp2, dlx2a, runx2, and sp7), apoptosis-related genes (bcl2), and pyroptosis-related genes (cas1, nlrp3) were significantly altered after treating with BPA in zebrafish larvae. In summary, our study, combining in vitro and in vivo models, confirmed that BPA has detrimental effects on osteoblast activity and bone development. These effects may be due to the promotion of apoptosis, the initiation of oxidative stress, and the inhibition of pyroptosis.


Subject(s)
Benzhydryl Compounds , Core Binding Factor Alpha 1 Subunit , Phenols , Zebrafish , Animals , Zebrafish/metabolism , Osteoblasts/metabolism , Oxidative Stress
10.
Plant Sci ; 343: 112072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513731

ABSTRACT

Rice growth and production are severely constrained by alkali stress. However, the mechanism underlying the rice tolerance to alkali stress is unclear. OsDSR3, a novel gene from the domains of unknown function 966 (DUF966) family, was identified and characterized for its function in the response of rice to alkali stress. The result of this study clearly showed that alkali stress significantly induced OsDSR3 expression level. Moreover, the expression of OsDSR3 was up-regulated by drought, salt, cold, H2O2 and abscisic acid (ABA), and down-regulated by gibberellic acid (GA3), and 2,4-Dichlorophenoxyacetic acid (2,4-D) treatments. Subcellular localization exhibited that OsDSR3 was detected in the nucleus and membrane. OsDSR3-overexpressing (OsDSR3-OE) plants showed higher tolerance to alkali stress than the wild-type (WT). In contrast, OsDSR3 knockout (OsDSR3-KO) mutants were more vulnerable to alkali stress. The differentially expressed genes (DEGs) among OsDSR3-OE and WT seedlings were mainly enriched in porphyrin and chlorophyll, starch and sucrose, and carotenoid metabolic pathways. Among these DEGs, 26 were identified as potential alkali stress-responsive genes, including several up-regulated genes like OsHAK5, OsGRX23 and OsNIR2. Consistent with the expression profiles of metabolic pathways-related genes, most of the metabolite contents and metabolite synthases activities were improved in OsDSR3-OE lines and decreased in OsDSR3-KO lines compared to WT. This may explain the higher tolerance of OE lines and lower tolerance of KO lines to alkali stress. These findings suggested that OsDSR3 positively regulates rice tolerance to alkali stress, which will help to elucidate the molecular mechanism underlying rice alkali tolerance.


Subject(s)
Oryza , Oryza/metabolism , Alkalies/metabolism , Hydrogen Peroxide/metabolism , Plants, Genetically Modified/genetics , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/metabolism , Droughts
11.
Medicine (Baltimore) ; 103(13): e37622, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552044

ABSTRACT

INTRODUCTION: Congenital surfactant deficiency, often caused by mutations in genes involved in surfactant biosynthesis such as ABCA3, presents a significant challenge in neonatal care due to its severe respiratory manifestations. This study aims to analyze the clinical data of a newborn male diagnosed with pulmonary surfactant metabolism dysfunction type 3 resulting from ABCA3 gene mutations to provide insights into the management of this condition. PATIENT CONCERNS: A newly born male child aged 1 day and 3 hours was referred to our department due to poor crying and shortness of breath. DIAGNOSIS: Primary diagnoses by the duty physicians were: neonatal pneumonia, neonatal respiratory failure, persistent neonatal pulmonary hypertension, birth asphyxia, myocardial damage, and arteriovenous catheterization. Genetic test revealed a compound heterozygous variant in the ABCA3 gene. One allele may be exon variant c.4561C>T, the second allele may be intron variant c.1896 + 2_1896 + 17del. The associated disease included pulmonary surfactant metabolism dysfunction type 3. INTERVENTIONS: He was initially treated with an antiinfective therapeutic regimen. OUTCOMES: The family was informed of this condition and signed off, and the child died. CONCLUSION: Hereditary pulmonary surfactant deficiency is a rare and untreatable disease. The case highlights the challenges in managing congenital surfactant deficiencies and emphasizes the need for heightened awareness of this rare cause of infant respiratory failure.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Alveolar Proteinosis , Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Respiratory Insufficiency , Humans , Infant, Newborn , Male , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Mutation , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/genetics , Respiratory Insufficiency/complications , Surface-Active Agents
12.
Microb Cell Fact ; 23(1): 76, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461254

ABSTRACT

BACKGROUND: Aspergillus niger ATCC 20611 is an industrially important fructooligosaccharides (FOS) producer since it produces the ß-fructofuranosidase with superior transglycosylation activity, which is responsible for the conversion of sucrose to FOS accompanied by the by-product (glucose) generation. This study aims to consume glucose to enhance the content of FOS by heterologously expressing glucose oxidase and peroxidase in engineered A. niger. RESULTS: Glucose oxidase was successfully expressed and co-localized with ß-fructofuranosidase in mycelia. These mycelia were applied to synthesis of FOS, which possessed an increased purity of 60.63% from 52.07%. Furthermore, peroxidase was expressed in A. niger and reached 7.70 U/g, which could remove the potential inhibitor of glucose oxidase to facilitate the FOS synthesis. Finally, the glucose oxidase-expressing strain and the peroxidase-expressing strain were jointly used to synthesize FOS, which content achieved 71.00%. CONCLUSIONS: This strategy allows for obtaining high-content FOS by the multiple enzymes expressed in the industrial fungus, avoiding additional purification processes used in the production of oligosaccharides. This study not only facilitated the high-purity FOS synthesis, but also demonstrated the potential of A. niger ATCC 20611 as an enzyme-producing cell factory.


Subject(s)
Aspergillus niger , Aspergillus , beta-Fructofuranosidase , Aspergillus niger/genetics , Glucose Oxidase/genetics , Oligosaccharides , Peroxidases , Glucose
13.
Front Microbiol ; 15: 1337435, 2024.
Article in English | MEDLINE | ID: mdl-38444812

ABSTRACT

Constructed wetlands are an efficient and cost-effective method of restoring degraded wetlands, in which the microorganisms present make a significant contribution to the ecosystem. In this study, we comprehensively investigated the patterns of diversity and assembly processes of 7 types of constructed wetlands at the rhizosphere and phyllosphere levels. The results showed that the rhizosphere communities of the constructed wetlands exhibited a more balanced structure than that of paddy fields, and 5 types of constructed wetland demonstrated higher potential diversity than that of paddy fields. However, the opposite trend was observed for the phyllosphere communities. Analysis of mean nearest taxon difference indicated that both deterministic and stochastic processes affected the establishment of the rhizosphere and phyllosphere communities, and stochastic processes may have had a larger effect. An iCAMP model showed that dispersal limitation was the most important factor (67% relative contribution) in the rhizosphere community, while drift was the most important (47% relative contribution) in the phyllosphere community. Mantel tests suggested that sucrase, average height, top height, total biomass, belowground biomass, maximum water-holding capacity, and capillary porosity were significantly correlated with processes in the rhizosphere community, whereas factors such as the deterministic process, average height, top height, and SOC were significantly correlated with deterministic processes in the phyllosphere community. Our results can assist in the evaluation of artificial restorations, and can provide understanding of the ecological processes of microbial communities, as well as new insights into the manipulation of microorganisms in polluted wetland ecosystems.

14.
Environ Sci Pollut Res Int ; 31(11): 17401-17416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337115

ABSTRACT

In recent years, experts and academics in the environmental management field have developed an interest in the factors and evaluation techniques that influence corporate environmental investment decisions. However, there are substantial differences between studies employing the most recent evaluation methodologies and those that use indicator systems. To explore the mechanisms that influence corporate environmental investment, this study investigated the determinants of environmental investment through the perspectives of firm, board, chair, and chief executive officer (CEO) characteristics using a machine learning approach. Based on a large-scale data sample from Chinese-listed companies, the results indicated that the extreme gradient boosting (XGBoost) model had an accuracy of up to 97.63%, thus performing the best. Additionally, the model that used SHapley Additive exPlanations (SHAP) to interpret XGBoost showed that a company's sales performance was the most important factor that influenced environmental investment, followed by CEO tenure, board independence, board gender diversity, chair academic experience, and the company's level of internationalization. Furthermore, when examining the sample of heavily polluting enterprises, sales, board gender diversity, CEO tenure, chair academic experience, board independence, and chair-CEO duality, all were found to play crucial roles in predicting environmental investment. Overall, this study aids in evaluating the factors that influence corporate environmental investment decisions and provides policymakers and practitioners with a machine learning approach for use when assessing these factors.


Subject(s)
Commerce , Investments , Machine Learning
15.
Sensors (Basel) ; 24(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38339504

ABSTRACT

ß-Ga2O3 photodetectors have the advantages of low dark current and strong radiation resistance in UV detection. However, the limited photocurrent has restricted their applications. Herein, MSM UV photodetectors based on (InxGa1-x)2O3 (x = 0, 0.1, 0.2, 0.3) by a sol-gel method were fabricated and studied. The doping of indium ions in Ga2O3 leads to lattice distortion and promotes the formation of oxygen vacancies. The oxygen vacancies in (InxGa1-x)2O3 can be modulated by various proportions of indium, and the increased oxygen vacancies contribute to the enhancement of electron concentration. The results show that the amorphous In0.4Ga1.6O3 photodetector exhibited improved performances, including a high light-to-dark current ratio (2.8 × 103) and high responsivity (739.2 A/W). This work provides a promising semiconductor material In0.4Ga1.6O3 for high-performance MSM UV photodetectors.

16.
Horm Metab Res ; 56(5): 341-349, 2024 May.
Article in English | MEDLINE | ID: mdl-38224966

ABSTRACT

Glucocorticoid-induced myopathy is a non-inflammatory toxic myopathy typified by proximal muscle weakness, muscle atrophy, fatigue, and easy fatigability. These vague symptoms coupled with underlying disorders may mask the signs of glucocorticoid-induced myopathy, leading to an underestimation of the disease's impact. This review briefly summarizes the classification, pathogenesis, and treatment options for glucocorticoid-induced muscle wasting. Additionally, we discuss current diagnostic measures in clinical research and routine care used for diagnosing and monitoring glucocorticoid-induced myopathy, which includes gait speed tests, muscle strength tests, hematologic tests, bioelectrical impedance analysis (BIA), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), electromyography, quantitative muscle ultrasound, histological examination, and genetic analysis. Continuous monitoring of patients receiving glucocorticoid therapy plays an important role in enabling early detection of glucocorticoid-induced myopathy, allowing physicians to modify treatment plans before significant clinical weakness arises.


Subject(s)
Glucocorticoids , Muscular Diseases , Humans , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Muscular Diseases/diagnosis , Muscular Diseases/chemically induced , Muscular Diseases/therapy
17.
BMC Pregnancy Childbirth ; 24(1): 7, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166840

ABSTRACT

BACKGROUND: Antepartum depression has been reported to be associated with the intensity of maternal prenatal noise exposure; however, the association between noise exposure duration and the development of antepartum depression has not been established. This study aimed to determine the total and trimester-specific association of prenatal noise exposure duration with the development of antepartum depression. METHODS: From May 2018 to June 2021, we recruited 2,166 pregnant women from Shengjing Hospital, northeast China. We used a standardized questionnaire to assess women's prenatal noise exposure and used the Edinburgh Postnatal Depression Scale to assess pregnant women's antepartum depression during the 1st -, 2nd -, and 3rd - trimesters. We calculated a cumulative noise exposure score ranging from 0 to 3, with a higher score reflecting higher frequency and longer duration of noise exposure during pregnancy. RESULTS: Women who were exposed to noise for ≥ 15 min per day had an increased risk of antepartum depression compared with women who were not exposed to noise during pregnancy [odds ratio (OR) = 1.83, 95%CI:1.18, 2.83]. Noise exposure in a specific trimester was associated with higher risk of depression in the same trimester and subsequent trimesters. We observed increases in antepartum depression risk with increasing cumulative noise exposure scores (P for trend < 0.05 for all). Pregnant women with the highest scores had the highest risk of antepartum depression during the first (OR = 1.30, 95%CI:1.02, 1.65), second (OR = 1.75, 95%CI:1.23, 2.50) trimesters. Women with a cumulative noise exposure score of 2 had the highest risk of antepartum depression during the third trimester (OR = 1.79, 95%CI:1.14, 2.80), as well as during the whole pregnancy (OR = 1.94, 95%CI:1.14, 3.30). CONCLUSIONS: Maternal prenatal noise exposure duration was positively associated with antepartum depression risk in a dose-response manner. It is necessary to develop strategies by which pregnant women can avoid excessive exposure to noise to prevent antepartum depression.


Subject(s)
Depression, Postpartum , Depression , Noise , Female , Humans , Pregnancy , Depression/etiology , Depression/complications , Depression, Postpartum/epidemiology , Depression, Postpartum/etiology , Maternal Exposure , Pregnancy Trimester, Third , Pregnancy Trimesters , Pregnant Women , Noise/adverse effects
18.
Ecotoxicol Environ Saf ; 271: 115960, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219622

ABSTRACT

Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.


Subject(s)
Ferroptosis , Flame Retardants , Organophosphates , Female , Animals , NF-E2-Related Factor 2/genetics , Zebrafish , Acetylcholinesterase , Flame Retardants/toxicity , Kelch-Like ECH-Associated Protein 1/genetics , Reactive Oxygen Species , Organophosphorus Compounds/toxicity , Oxidative Stress , Xanthophylls
19.
Small ; 20(14): e2308109, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988717

ABSTRACT

Silicon is regarded as the most promising candidate due to its ultrahigh theoretical energy density (4200 mAh g-1). However, the large volume expansion of silicon nanoparticles would result in the destruction of electrodes and a shortened cycle lifetime. Here, inspired by the natural structure of bamboo, the silicon anode with vascular bundle-like structure is proposed to improve the electrochemical performance for the first time. The dense channel wall in the silicon anode can accommodate the volume change of silicon nanoparticles and the transport of ions and electrons is also enhanced. The obtained silicon anodes display excellent mechanical properties (50% compression resilience and the average peel force of 4.34 N) and good wettability. What more, the silicon anodes exhibit high initial coulombic efficiency (94.5%), excellent cycle stability (2100 mAh g-1 after 300 cycles) which stands out among the silicon anodes. Specially, the silicon anode with impressive areal capacity of 36.36 mAh cm-2 and initial coulombic efficiency of 84% is also achieved. This work offers a novel and efficient strategy for the preparation of the flexible electrodes with outstanding performance.

20.
Int J Biol Macromol ; 254(Pt 1): 127642, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898258

ABSTRACT

Overuse of insecticides has led to severe environmental problems. Insect cuticle, which consists mainly of chitin, proteins and a thin outer lipid layer, serves multiple functions. Its prominent role is as a physical barrier that impedes the penetration of xenobiotics, including insecticides. Blattella germanica (L.) is a major worldwide indoor pest that causes allergic disease and asthma. Extensive use of pyrethroid insecticides, including ß-cypermethrin, has selected for the rapid and independent evolution of resistance in cockroach populations on a global scale. We demonstrated that BgCPLCP1, the first CPLCP (cuticular proteins of low complexity with a highly repetitive proline-rich region) family cuticular protein in order Blattodea, contributes to insecticide penetration resistance. Silencing BgCPLCP1 resulted in 85.0 %-85.7 % and 81.0 %-82.0 % thinner cuticle (and especially thinner endocuticle) in the insecticide-susceptible (S) and ß-cypermethrin-resistant (R) strains, respectively. The thinner and more permeable cuticles resulted in 14.4 % and 20.0 % lower survival of ß-cypermethrin-treated S- and R-strain cockroaches, respectively. This study advances our understanding of cuticular penetration resistance in insects and opens opportunities for the development of new efficiently and environmentally friendly insecticides targeting the CPLCP family of cuticular proteins.


Subject(s)
Blattellidae , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Blattellidae/genetics , Allergens
SELECTION OF CITATIONS
SEARCH DETAIL
...