Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Surg ; 10: 1040407, 2023.
Article in English | MEDLINE | ID: mdl-36843993

ABSTRACT

Objective: This study aims to explore the clinical effect of early rehabilitation training combined with negative pressure wound therapy (NPWT) for treating deep partial-thickness hand burns. Methods: Twenty patients with deep partial-thickness hand burns were randomly divided into an experimental group (n = 10) and a control group (n = 10). In the experimental group, early rehabilitation training combined with NPWT was performed, including the proper sealing of the negative pressure device, intraoperative plastic brace, early postoperative exercise therapy during negative pressure treatment, and intraoperative and postoperative body positioning. Routine NPWT was conducted in the control group. Both groups received 4 weeks of rehabilitation after wounds healed by NPWT with or without skin grafts. Hand function was evaluated after wound healing and 4 weeks after rehabilitation, including hand joint total active motion (TAM) and the brief Michigan Hand Questionnaire (bMHQ). Results: Twenty patients were involved in this study, including 16 men and 4 women, aged 18-70 years, and the hand burn area ranged from 0.5% to 2% of the total body surface area (TBSA). There was no significant difference in TAM and bMHQ scores between the two groups after negative pressure removal. After 4 weeks of rehabilitation training, the TAM scores and bMHQ scores were significantly improved in both groups (p < 0.05); among them, those of the experimental group were both significantly better than those of the control group (p < 0.05). Conclusion: The application of early rehabilitation training combined with NPWT to treat deep partial-thickness hand burns can effectively improve hand function.

2.
ACS Appl Mater Interfaces ; 13(28): 33066-33074, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34251170

ABSTRACT

Conventional polymer binder in a lithium-sulfur (Li-S) battery, poly(vinylidene fluoride) (PVDF), suffers from insufficient ion conductivity, poor polysulfide-trapping ability, weak mechanical property, and requirement of organic solvents, which significantly encumber the industrial application of Li-S battery. Herein, a water-soluble binder with trifunctions, covalently cross-linked quaternary ammonium cationic starch (c-QACS), is developed to confront these issues. Similar to the poly(ethylene oxide) solid electrolytes, the c-QACS binder remarkably improves Li+ ion transfer capacity. The abundant O actives endow the c-QACS binder with admirable lithium polysulfide-trapping capability to retard the shuttle effect. In addition, the formed 3D network effectively maintains the electrode integrity during cycling. Benefiting from the above merits, the sulfur cathode with the c-QACS binder demonstrates a performance improvement of 300 and 150% compared with sulfur cathode with PVDF and bulk QACS binder after 100 cycles at 0.2C.

3.
Front Microbiol ; 11: 1067, 2020.
Article in English | MEDLINE | ID: mdl-32582064

ABSTRACT

Porcine circovirus type 3 (PCV3), which currently lacks effective preventive measures, has caused tremendous economic losses to the pig husbandry. Obtaining the strain of PCV3 is the key to preparing related vaccines and developing corresponding antiviral drugs. In this study, according to the linear sequence of PCV3 DNA published on GenBank, the sequence was rearranged with SnapGene gene-editing software, and after rearrangement, the HindIII restriction endonuclease site was added to the end of the linear DNA, so that both ends have the same restriction endonuclease site. On this basis, the rearranged linear DNA is obtained by gene synthesis, PCR amplification, DNA purification, etc., and is digested and connected in vitro to obtain cyclized DNA. PCV3 infectious clones were obtained by transfecting 3D4/21 cell lines. The obtained PCV3 was identified by PCR, Western blotting, and indirect immunofluorescence tests. The results showed that this study successfully obtained the strain of PCV3 in vitro. To further evaluate the pathogenicity of the obtained PCV3 infectious clones, this study established an animal model of Kunming mice infected with PCV3. The results of RT-PCR, Western blotting and immunohistochemistry showed that PCV3 can infect myocardium and alveoli of Kunming mice, but no PCV3 was detected in other tissues. The above studies indicate that PCV3 circular DNA can be used to construct PCV3 infectious clones. This research will provide a new method for the construction of circular DNA viruses and lay the foundation for the research and pathogenesis of PCV3 vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL
...