Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.164
Filter
1.
Stem Cell Res ; 79: 103496, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018827

ABSTRACT

The KCNQ1 gene encodes a voltage-gated potassium channel required for cardiac action potentials. Mutations in this gene have been associated with hereditary long QT syndrome 1, Jervell and Lange-Nielsen syndromes, and familial atrial fibrillation. The NM_000218.3(KCNQ1): c.604 + 2T > C mutation has been categorized as the causative variant leading to LQT1. In this study, we generated a KCNQ1 (c.644 + 2T > C) mutation human embryonic stem cell line WAe009-A-1L based on CRISPR base editing system. WAe009-A-1L cell has the potential to differentiate cardiomyocytes and would be used as an in vitro disease model for mechanism exploration and drug screening.

2.
Article in English | MEDLINE | ID: mdl-39019317

ABSTRACT

OBJECTIVE: Recombinant human hepatocyte growth factor (HGF) plasmids are novel alternatives to salvage limbs in patients with chronic limb threatening ischaemia (CLTI). A systematic review and meta-analysis of data were conducted to assess the therapeutic efficacy of HGF plasmids in patients with CLTI. DATA SOURCES: Randomised controlled studies evaluating HGF plasmid efficacy in patients with CLTI were identified using Medline, Embase, Cochrane Database of Systematic Reviews, and ClinicalTrials.gov databases. REVIEW METHODS: Meta-analyses of the reported relative risks (RR) or mean differences (MD) were conducted. Subgroup analyses determined the efficacy of HGF plasmids in cohorts excluding Buerger's disease. Certainty of evidence for each outcome was assessed. RESULTS: Seven studies (n = 655) were included. Based on low certainty evidence, patients treated with HGF had a significantly higher complete ulcer healing rate (RR 1.99, 95% CI 1.30 - 3.04; p = .015) than patients treated with placebo. The HGF treatment was associated with reduced visual analogue scale (VAS) scores of pain severity (MD -1.56, 95% CI -2.12 - -1.00; p < .001) vs. placebo in patients with CLTI assessed at the 3 month follow up (low certainty evidence); no significant differences were observed in major amputation (RR 0.91, 95% CI 0.48 - 1.73; p = .77) (low certainty evidence), or all-cause mortality (RR 0.93, 95% CI 0.38 - 2.27; p = .87) (low certainty evidence) between patients treated with HGF and placebo. Low certainty evidence suggested no significant differences in change in ankle-brachial index at 6 months (MD 0.00, 95% CI -0.09 - 0.09; p = 1.0) between patients treated with HGF and placebo. The complete ulcer healing rate and improved 3 month VAS scores of pain severity benefits persisted in subgroup analyses (low certainty evidence). CONCLUSION: Hepatocyte growth factor treatment is associated with an increased complete ulcer healing rate and reduced ischaemic pain in patients with CLTI.

3.
Dev Sci ; : e13549, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020452

ABSTRACT

Harlow's seminal work on the nature of attachment focused on the importance of warm, responsive, and loving relationships in children's healthy development. While the need for love and care is arguably universal, the ways in which these emotions are expressed can vary across cultural contexts. We examined how Chinese American parents' expressions of love were associated with children's attachment security. A total of 110 Chinese American immigrant parent-child dyads (children 7-11 years old, 49% girls) participated in 3-min conversations in which parents were instructed to communicate love and care. Proposition-level analyses in speech (total 8825 propositions) identified three types of affection: training (guan and chiao shun); relational affection (qin); and validation (acceptance and encouragement of child's own expression of emotion, thoughts, and behaviors). Higher training was observed in parents with lower American orientation and lower income. Higher relational affection was observed in parents with lower income. Higher validation was observed in parents with higher income. Using path analyses, training and validation were found to be positively associated with children's attachment security beyond parenting styles. Effects of parents' relational affection were moderated by children's American orientation. Results demonstrate how immigrant parents draw on multiple cultural scripts to express love and care. These findings expand traditional concepts of parental love in immigrant families and illustrate how bicultural expressions of love can shape attachment security in middle childhood. A video abstract of this article can be viewed at https://youtu.be/HqUfIDxkFsE RESEARCH HIGHLIGHTS: Analyses of parent-child discussions identified three parental affection styles (i.e., training, relational affection, and validation) as expressions of love and care in Chinese American immigrant families. Training and validation were positively associated with children's attachment security. Relational affection was associated with lower attachment security for children with higher American cultural orientation, suggesting the effects of parent-child expressions of love are shaped by acculturation.

4.
Dev Comp Immunol ; 159: 105226, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992733

ABSTRACT

The interactions induced by RIP homotypic interaction motif (RHIM) are essential for the activation of inflammatory signaling and certain cell death pathways. In the present study, a RHIM-containing protein was identified from Pacific oyster Crassostrea gigas, which harbored a RHIM domain and a Death domain (designated CgRHIM-containing protein). The mRNA transcripts of CgRHIM-containing protein were constitutively expressed in all the examined tissues of oysters, with the highest expression level in mantle. The CgRHIM-containing protein was mainly distributed in the cytoplasm of oyster haemocytes. After high temperature stress, the expression levels of CgRel and CgBcl-2 increased significantly, and reached the peak level at 12 h, then decreased gradually. The transcripts of CgRHIM-containing protein, Cgcaspase-8 and Cgcaspase-3 in haemocytes up-regulated at 12 h after high temperature stress. Moreover, the protein abundance of CgRHIM-containing protein increased significantly, and the ubiquitination level of CgRHIM-containing protein in haemocytes showed an increasing trend at first and then decreased. After the expression of CgRHIM-containing protein was knocked down by siRNA, the mRNA expression levels of CgRel and CgBcl-2 decreased significantly at 6 h after high temperature stress, and those of CgFADD-like, Cgcaspase-8 and Cgcaspase-3, as well as the apoptosis rate of haemocytes also decreased significantly at 24 h. These results indicated that CgRHIM-containing protein might regulate haemocyte apoptosis in oysters upon high temperature stress via mediating the expression of Rel, Bcl-2 and caspase-8/3.

5.
Biomed Opt Express ; 15(7): 4345-4364, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022540

ABSTRACT

Proximal rotary scanning is predominantly used in the clinical practice of endoscopic and intravascular OCT, mainly because of the much lower manufacturing cost of the probe compared to distal scanning. However, proximal scanning causes severe beam stability issues (also known as non-uniform rotational distortion, NURD), which hinders the extension of its applications to functional imaging, such as OCT elastography (OCE). In this work, we demonstrate the abilities of learning-based NURD correction methods to enable the imaging stability required for intensity-based OCE. Compared with the previous learning-based NURD correction methods that use pseudo distortion vectors for model training, we propose a method to extract real distortion vectors from a specific endoscopic OCT system, and validate its superiority in accuracy under both convolutional-neural-network- and transformer-based learning architectures. We further verify its effectiveness in elastography calculations (digital image correlation and optical flow) and the advantages of our method over other NURD correction methods. Using the air pressure of a balloon catheter as a mechanical stimulus, our proximal-scanning endoscopic OCE could effectively differentiate between areas of varying stiffness of atherosclerotic vascular phantoms. Compared with the existing endoscopic OCE methods that measure only in the radial direction, our method could achieve 2D displacement/strain distribution in both radial and circumferential directions.

6.
Article in English | MEDLINE | ID: mdl-39024085

ABSTRACT

Introducing deep trackers to thermal infrared (TIR) tracking is hampered by the scarcity of large training datasets. To alleviate the predicament, a common approach is full fine-tuning (FFT) based on pretrained RGB parameters. Nevertheless, due to its inefficient training pattern and representation collapse risk, some parameter-efficient fine-tuning (PEFT) alternatives have been promoted recently. However, the existing PEFT algorithms typically follow a bottom-up way, where their attention solely relies on the input and lacks the capability of task-guided top-down attention, which provides the task-relevant representation such as the human visual perception system. In this article, we introduce ReFocus, a new PEFT method that adapts the pretrained RGB foundation tracking model to the downstream TIR tracking task through the guidance of high-level task-specific signals in a top-down attention manner. By freezing the entire foundation model and only training query-guided feature selection and top-down blocks, ReFocus achieves state-of-the-art (SOTA) TIR tracking performance while keeping training efficiency. Extensive experiments on five TIR tracking benchmarks demonstrate that ReFocus significantly improves the performance of the foundation tracker. Besides, further ablation studies show the effectiveness and flexible adaptability of the proposed method to lighter foundation models and different tracking frameworks. Compared to FFT and other bottom-up PEFT paradigms, such as head probe, low-rank adaptation (LoRA), and adapter, our method achieves comparable or superior performance with fewer training parameters and reveals the advantage of learning stability.

7.
Article in English | MEDLINE | ID: mdl-38961002

ABSTRACT

Pulmonary fibrosis is a debilitating lung disease marked by excessive fibrotic tissue accumulation, which significantly impairs respiratory function. Given the limitations of current therapies, there is an increasing interest in exploring traditional herbal formulations like Jie Geng Tang (JGT) for treatment. This study examines the potential of JGT and its bioactive component, quercetin, in reversing bleomycin (BLM)-induced pulmonary fibrosis in mice. We employed a BLM-induced MLE-12 cell damage model for in vitro studies and a bleomycin-induced fibrosis model in C57BL/6 mice for in vivo experiments. In vitro assessments showed that JGT significantly enhanced cell viability and reduced apoptosis in MLE-12 cells treated with BLM. These findings underscore JGT's potential for cytoprotection against fibrotic agents. In vivo, JGT was effective in modulating the expression of E-cadherin and vimentin, key markers of the epithelial-mesenchymal transition (EMT) pathway, indicating its role in mitigating EMT-associated fibrotic changes in lung tissue. Quercetin, identified through network pharmacology analysis as a potential key bioactive component of JGT, was highlighted for its role in the regulatory mechanisms underlying fibrosis progression, particularly through the modulation of the IL-17 pathway and Il6 expression. By targeting inflammatory pathways and key processes like EMT, JGT and quercetin offer a potent alternative to conventional therapies, meriting further clinical exploration to harness their full therapeutic potential in fibrotic diseases.

8.
Plant Cell Environ ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963088

ABSTRACT

The regulation of legume-rhizobia symbiosis by microorganisms has obtained considerable interest in recent research, particularly in the common rhizobacteria Bacillus. However, few studies have provided detailed explanations regarding the regulatory mechanisms involved. Here, we investigated the effects of Bacillus (Bac.B) on Bradyrhizobium-soybean (Glycine max) symbiosis and elucidated the underlying ecological mechanisms. We found that two Bradyrhizobium strains (i.e. Bra.Q2 and Bra.D) isolated from nodules significantly promoted nitrogen (N) efficiency of soybean via facilitating nodule formation, thereby enhanced plant growth and yield. However, the intrusion of Bac.B caused a reverse shift in the synergistic efficiency of N2 fixation in the soybean-Bradyrhizobium symbiosis. Biofilm formation and naringenin may be importantin suppression of Bra.Q2 growth regulated by Bac.B. In addition, transcriptome and microbiome analyses revealed that Bra.Q2 and Bac.B might interact to regulateN transport and assimilation, thus influence the bacterial composition related to plant N nutrition in nodules. Also, the metabolisms of secondary metabolites and hormones associated with plant-microbe interaction and growth regulation were modulated by Bra.Q2 and Bac.B coinoculation. Collectively, we demonstrate that Bacillus negatively affects Bradyrhizobium-soybean symbiosis and modulate microbial interactions in the nodule. Our findings highlight a novel Bacillus-based regulation to improve N efficiency and sustainable agricultural development.

11.
Article in English | MEDLINE | ID: mdl-38980785

ABSTRACT

Under low data regimes, few-shot object detection (FSOD) transfers related knowledge from base classes with sufficient annotations to novel classes with limited samples in a two-step paradigm, including base training and balanced fine-tuning. In base training, the learned embedding space needs to be dispersed with large class margins to facilitate novel class accommodation and avoid feature aliasing while in balanced fine-tuning properly concentrating with small margins to represent novel classes precisely. Although obsession with the discrimination and representation dilemma has stimulated substantial progress, explorations for the equilibrium of class margins within the embedding space are still in full swing. In this study, we propose a class margin optimization scheme, termed explicit margin equilibrium (EME), by explicitly leveraging the quantified relationship between base and novel classes. EME first maximizes base-class margins to reserve adequate space to prepare for novel class adaptation. During fine-tuning, it quantifies the interclass semantic relationships by calculating the equilibrium coefficients based on the assumption that novel instances can be represented by linear combinations of base-class prototypes. EME finally reweights margin loss using equilibrium coefficients to adapt base knowledge for novel instance learning with the help of instance disturbance (ID) augmentation. As a plug-and-play module, EME can also be applied to few-shot classification. Consistent performance gains upon various baseline methods and benchmarks validate the generality and efficacy of EME. The code is available at github.com/Bohao-Lee/EME.

12.
Cancer Cell ; 42(7): 1268-1285.e7, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981439

ABSTRACT

Expanding the efficacy of immune checkpoint blockade (ICB) in colorectal cancer (CRC) presses for a comprehensive understanding of treatment responsiveness. Here, we analyze multiple sequential single-cell samples from 22 patients undergoing PD-1 blockade to map the evolution of local and systemic immunity of CRC patients. In tumors, we identify coordinated cellular programs exhibiting distinct response associations. Specifically, exhausted T (Tex) or tumor-reactive-like CD8+ T (Ttr-like) cells are closely related to treatment efficacy, and Tex cells show correlated proportion changes with multiple other tumor-enriched cell types following PD-1 blockade. In addition, we reveal the less-exhausted phenotype of blood-associated Ttr-like cells in tumors and find that their higher abundance suggests better treatment outcomes. Finally, a higher major histocompatibility complex (MHC) II-related signature in circulating CD8+ T cells at baseline is linked to superior responses. Our study provides insights into the spatiotemporal cellular dynamics following neoadjuvant PD-1 blockade in CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Immunotherapy , Single-Cell Analysis , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Single-Cell Analysis/methods , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Male , Female
13.
Med Sci Monit ; 30: e943955, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985697

ABSTRACT

Deep vein thrombosis (DVT) of the lower extremities is divided into 2 categories according to the extent of thrombosis involvement. Thrombosis involving the popliteal vein, femoral vein, and iliac vein is classified as proximal DVT, while thrombosis involving the anterior tibial vein, posterior tibial vein, peroneal vein, and calf muscles vein is regarded as distal DVT. There are updated guidelines for the anticoagulant treatment for proximal DVT, but the best anticoagulant treatment for distal DVT is still controversial, especially for isolated calf muscular vein thrombosis (CMVT). The risk of isolated CMVT extending to the proximal deep veins and developing into pulmonary embolism is lower than with distal DVT. Some scholars believe that isolated CMVT has the risk of evolving into proximal deep vein thrombosis and pulmonary embolism, and active early anticoagulation therapy can reduce the risk and benefit patients. In addition, based on the characteristics of CMVT and the bleeding risk of anticoagulation therapy, some studies have recommended use of non-anticoagulation methods such as compression therapy. There is still a lack of multicenter, big-data, randomized, controlled trials on the benefits or risks of anticoagulation therapy. Among scholars who support anticoagulation therapy, there is still a lack of consensus on the optimal duration. This article reviews the current evidence on anticoagulant therapy for patients with isolated CMVT and how long the anticoagulation course should be if anticoagulation is required. Our research will provide a theoretical basis for subsequent research. More prospective studies with larger sample sizes are needed to provide more clinical evidence.


Subject(s)
Anticoagulants , Leg , Venous Thrombosis , Humans , Anticoagulants/therapeutic use , Venous Thrombosis/drug therapy , Leg/blood supply , Muscle, Skeletal/blood supply , Pulmonary Embolism/drug therapy
14.
Leuk Lymphoma ; : 1-9, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990135

ABSTRACT

Haploidentical hematopoietic cell transplants (haplo-HCT) with donor-specific anti-HLA antibodies (DSAs) are associated with high rates of primary graft failure and poor overall survival (OS). Limited data exists regarding the effect of desensitization. Our institution began routine desensitization for patients with DSAs in 2014. Adult patients undergoing haplo-HCT at Washington University from 2009-2021 were identified and divided into three cohorts: no DSA, untreated DSA (2009-2014) or treated DSA (2014-2021). Desensitization therapy using plasmapheresis and IVIg was performed. Retrospectively, 304 patients were identified. 14 of 30 patients with DSAs underwent desensitization. By day +2, 57% of patients cleared all DSAs. After multivariable analysis, OS was similar between treated DSA and no DSA (HR: 0.69, p = 0.37). Untreated DSA had significantly lower OS compared to no DSA group (HR 1.80, p = 0.046). Desensitization with a backbone of plasmapheresis and IVIg before haplo-HCT may produce similar outcomes to patients without DSAs.

15.
Nat Commun ; 15(1): 5771, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982107

ABSTRACT

Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.

16.
Mol Immunol ; 173: 1-9, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996607

ABSTRACT

Restoring and maintaining the function of endothelial cells is critical for acute respiratory distress syndrome (ARDS). Guanylate binding protein 1(GBP1) is proved to elevated in ARDS patients, but its role and mechanism remains unclear. The objective of this study is to investigate the internal mechanism of GBP1 in lung injury. Our study showed that when the LPS and IFN-γ induced human Pulmonary Microvascular Endothelial Cells (HPMECs) injury model was established, cell viability was significantly reduced, and the levels of GBP1 levels and inflammatory factors were significantly increased. When transfection with si-GBP1, low expression of GBP1 promoted cell proliferation and migration, and decreased the expression of downstream inflammatory factors. Furthermore, the inhibition of GBP1 significantly reduced the occurrence of cell pyroptosis and the expression of NLRP3 and STAT1. Our study indicated that GBP1 alleviates endothelial pyroptosis and inflammation through STAT1 / NLRP3/GSDMD signaling pathway, and GBP1 may be a new target in the treatment of lung injury in the future.

17.
Article in English | MEDLINE | ID: mdl-38996693

ABSTRACT

Preliminary experiments in our laboratory have demonstrated that common carp (Cyprinus carpio) cultivated for two months in land-based container recirculating aquaculture systems (C-RAS) exhibit superior muscle quality compared to those raised in traditional pond systems (TP). To elucidate the molecular mechanisms underlying muscle quality variations in common carp cultured under two aquaculture systems, transcriptomic and metabolomic analyses were performed on muscle tissues of specimens aged 11 to 23 months. Comparison of muscle histological sections between the two groups indicated a significantly lower long diameter of muscle fibers in the C-RAS group compared to the TP group (P < 0.01). Conversely, the muscle fiber density was significantly higher in the C-RAS group than in the TP group (P < 0.05). Transcriptomic and metabolomic analyses identified 3390 differentially expressed genes (DEGs)-1558 upregulated and 1832 downregulated-and 181 differentially expressed metabolites (DEMs)-124 upregulated and 57 downregulated-between the groups. Based on integrated transcriptomic and metabolomic analyses, the significant differences focus on metabolic pathways involving glycolysis/gluconeogenesis, arginine and proline metabolism, arginine biosynthesis, and purine metabolism. The study revealed that the muscle quality of common carp in two aquaculture systems is primarily regulated through improvements in energy metabolism, amino acid metabolism, fatty acid metabolism, and purine metabolism. These metabolic processes play significant roles in promoting muscle fiber hyperplasia and hypertrophy, enhancing muscle flavor, and increasing muscle antioxidant capacity. This study provides new insights into the molecular and metabolic pathways that control muscle quality in common carp under different environmental factors.

18.
ChemSusChem ; : e202400623, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997233

ABSTRACT

The abundant, active, and acidic-stable catalysts for the oxygen evolution reaction (OER) are rare to the proton exchange membrane-based water electrolysis. Mn-based materials show promise as electrocatalysts for OER in acid electrolytes. However, the relationship between the stability, activity and structure of Mn-based catalysts in acidic environments remains unclear. In this study, phase-pure MnSb2O6 was successfully prepared and investigated as a catalyst for OER in a sulfuric acid solution (pH of 2.0). A comprehensive mechanistic comparison between MnSb2O6 and Mn3O4 revealed that the rate-determining step for OER on MnSb2O6 is the direct formation of MnIV=O from MnII-H2O by the 2H+/2e- process. This process avoids the rearrangement of adjacent MnIII intermediates, leading to outstanding stability and activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...