Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Drug Resist Updat ; 68: 100936, 2023 05.
Article in English | MEDLINE | ID: mdl-36764075

ABSTRACT

AIMS: Long non-coding RNAs (lncRNAs), as one of the components of exosomes derived from cancer-associated fibroblasts (CAFs), exhibit a crucial role in the pathogenesis and chemoresistance of gastric cancer (GC). Herein, we investigated the role and mechanism of a novel lncRNA disheveled binding antagonist of beta catenin3 antisense1 (DACT3-AS1) and its involvement in GC. METHODS: DACT3-AS1 was identified by RNA-sequencing and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The functional role of DACT3-AS1 in GC was evaluated using in vitro and in vivo experiments including Transwell assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, immunoblotting, and xenograft tumor mouse model. Dual-luciferase reporter assay was performed to assess the association between genes. RESULTS: DACT3-AS1 was downregulated and involved in poor prognosis of patients with GC. The results from both in vitro and in vivo experiments showed that DACT3-AS1 suppressed cell proliferation, migration, and invasion through targeting miR-181a-5p/sirtuin 1 (SIRT1) axis. Additionally, DACT3-AS1 was transmitted from CAFs to GC cells mainly via exosomes. Exosomal DACT3-AS1 alleviated xenograft tumor growth. DACT3-AS1 conferred sensitivity of cancer cells to oxaliplatin through SIRT1-mediated ferroptosis both in vitro and in vivo. CONCLUSIONS: CAFs-derived exosomal DACT3-AS1 is a suppressive regulator in malignant transformation and oxaliplatin resistance. DACT3-AS1 could be used for diagnosis and treatment of GC.


Subject(s)
Cancer-Associated Fibroblasts , Ferroptosis , MicroRNAs , Stomach Neoplasms , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Ferroptosis/genetics , Sirtuin 1/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Transformation, Neoplastic , Cell Proliferation , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism
2.
ACS Nano ; 9(4): 4649-59, 2015.
Article in English | MEDLINE | ID: mdl-25857656

ABSTRACT

It is extremely important for emerging applications and still enormously challenging to develop multifunctional stimuli-responsive anisotropic polymeric micelles with integration of potentially targeted therapeutic and diagnostic function. Herein, we report a first example of fluorescent anisotropic micelles (FAMs) with Fe(3+), DTT, H2O2, and thermal responsive fluorescence and morphology. FAMs from direct aqueous self-assembly of amphiphilic diblock copolymer showed reversible "switch off/on" of aqua fluorescent emission and controllable structural change by sequential addition of Fe(3+) and DTT. In addition, the FAMs had reversible dual-thermal responsiveness of fluorescence and morphology. This micelle could serve as a promising candidate for all-in-one application of quantitative detecting, imaging, drug delivery, and targeted release.


Subject(s)
Dioxanes/chemistry , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles , Polyethylene Glycols/chemistry , Polymers/chemistry , Water/chemistry , Dithiothreitol/chemistry , Fluorescence Polarization , Hydrogen-Ion Concentration , Iron/chemistry , Temperature
3.
Int J Nanomedicine ; 10: 697-709, 2015.
Article in English | MEDLINE | ID: mdl-25653518

ABSTRACT

A root canal sealer with antibacterial activity can be efficacious in preventing reinfection that results from residual microorganisms and/or the leakage of microorganisms. In the present study, a series of injectable, self-curing polyurethane (PU)-based antibacterial sealers with different concentrations of silver phosphate (Ag3PO4) were fabricated. Subsequently, their physicochemical properties, antibacterial abilities, and preliminary cytocompatibilities were evaluated. The results indicated that the fabricated PU-based sealers can achieve a high conversion rate in a short amount of time. More than 95% of the isocyanate group of PU sealers with 3 wt% (PU3) and 5 wt% (PU5) concentrations of Ag3PO4 were included in the curing reaction after 7 hours. With the exception of those for film thickness for PU5, the results of setting time, film thickness, and solubility were able to meet the requirements of the International Organization for Standardization. The antibacterial tests showed that PU3 and PU5 exhibit stronger antimicrobial effects than that achieved with 1 wt% Ag3PO4 (PU1) and AH Plus (positive control) against Streptococcus mutans. The cytocompatibility evaluation revealed that the PU1 and PU3 sealers possess good cytocompatibility and low cytotoxicity. These results demonstrate that the PU3 sealer offers good physicochemical and antimicrobial properties along with cytocompatibility, which may hold great application potential in the field of root canal fillings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Proliferation/drug effects , Polyurethanes/pharmacology , Root Canal Filling Materials/chemistry , Streptococcus mutans/drug effects , Zinc Oxide-Eugenol Cement/pharmacology , Animals , Bacterial Adhesion/drug effects , Cells, Cultured , Dental Pulp Cavity/microbiology , Fibroblasts/cytology , Fibroblasts/drug effects , Mice , Polyurethanes/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Zinc Oxide-Eugenol Cement/chemistry
4.
Macromol Rapid Commun ; 35(16): 1450-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25048154

ABSTRACT

A novel and facile bottom-up strategy for preparing core-shell nanofibers with selectively localized carbon nanotubes is developed using hierarchical composite micelles of crystalline-coil copolymer and carbon nanotubes as the building blocks. An amphiphilic di-block copolymer of poly (p-dioxanone) (PPDO) and PEG (polyethylene glycol) functionalized with pyrene moieties at the chain ends of PPDO blocks (Py-PPDO-b-PEG) is designed for constructing composite micelles with multiwalled carbon nanotubes (MWCNTs). The self-assembly of Py-PPDO-b-PEG and MWCNTs is co-induced by the crystallization of PPDO blocks and the π-π stacking interactions between pyrene moieties and MWCNTs, resulting in composite micelles with "shish kebab"-like nanostructure. A mixture of composite micelles and polyvinyl alcohol (PVA) water solution is then used as the spinning solution for preparing electrospun nanofibers. The morphologies of the nanofibers with different composition are investigated by SEM and TEM. The results suggest that the MWCNTs selectively localized in the core of the nanofibers of MWCNTs/Py-PPDO-b-PEG/PVA. The alignment and interfusion of composite micelles during the formation of nanofibers may confine the carbon nanotubes in the hydrophobic core region. In contrast, the copolymer without pyrene moieties cannot form composite micelles, thus these nanofibers show selective localization of MWCNTs in the PVA shell region.


Subject(s)
Micelles , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Crystallization , Dioxanes/chemistry , Hydrophobic and Hydrophilic Interactions , Nanofibers/ultrastructure , Polyethylene Glycols/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Polyvinyl Alcohol/chemistry , Pyrenes/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...