Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Direct ; 18(1): 63, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37807075

ABSTRACT

BACKGROUND: Anthracyclines including doxorubicin are essential components of many cancer chemotherapy regimens, but their cardiotoxicity severely limits their use. New strategies for treating anthracycline-induced cardiotoxicity (AIC) are still needed. Anthracycline-induced DNA double-strand break (DSB) is the major cause of its cardiotoxicity. However, DSB-based drug screening for AIC has not been performed possibly due to the limited throughput of common assays for detecting DSB. To discover new therapeutic candidates for AIC, here we established a method to rapidly visualize and accurately evaluate the intranuclear anthracycline-induced DSB, and performed a screening for DSB inhibitors. RESULTS: First, we constructed a cardiomyocyte cell line stably expressing EGFP-53BP1, in which the formation of EGFP-53BP1 foci faithfully marked the doxorubicin-induced DSB, providing a faster and visible approach to detecting DSB. To quantify the DSB, we used a deep learning-based image analysis method, which showed the better ability to distinguish different cell populations undergoing different treatments of doxorubicin or reference compounds, compared with the traditional threshold-based method. Subsequently, we applied the deep learning-assisted high-content screening method to 315 compounds and found three compounds (kaempferol, kaempferide, and isoliquiritigenin) that exert cardioprotective effects in vitro. Among them, the protective effect of isoliquiritigenin is accompanied by the up-regulation of HO-1, down-regulation of peroxynitrite and topo II, and the alleviation of doxorubicin-induced DSB and apoptosis. The results of animal experiments also showed that isoliquiritigenin maintained the myocardial tissue structure and cardiac function in vivo. Moreover, isoliquiritigenin did not affect the killing of HeLa and MDA-MB-436 cancer cells by doxorubicin and thus has the potential to be a lead compound to exert cardioprotective effects without affecting the antitumor effect of doxorubicin. CONCLUSIONS: Our findings provided a new method for the drug discovery for AIC, which combines phenotypic screening with artificial intelligence. The results suggested that isoliquiritigenin as an inhibitor of DSB may be a promising drug candidate for AIC.


Subject(s)
Cardiotoxicity , Deep Learning , Animals , Cardiotoxicity/drug therapy , Artificial Intelligence , Doxorubicin/toxicity , Antibiotics, Antineoplastic/toxicity , Anthracyclines/therapeutic use , DNA
2.
Adv Sci (Weinh) ; 10(30): e2301136, 2023 10.
Article in English | MEDLINE | ID: mdl-37679058

ABSTRACT

Doxorubicin-induced cardiomyopathy (DIC) brings tough clinical challenges as well as continued demand in developing agents for adjuvant cardioprotective therapies. Here, a zebrafish phenotypic screening with deep-learning assisted multiplex cardiac functional analysis using motion videos of larval hearts is established. Through training the model on a dataset of 2125 labeled ventricular images, ZVSegNet and HRNet exhibit superior performance over previous methods. As a result of high-content phenotypic screening, cyanidin chloride (CyCl) is identified as a potent suppressor of DIC. CyCl effectively rescues cardiac cell death and improves heart function in both in vitro and in vivo models of Doxorubicin (Dox) exposure. CyCl shows strong inhibitory effects on lipid peroxidation and mitochondrial damage and prevents ferroptosis and apoptosis-related cell death. Molecular docking and thermal shift assay further suggest a direct binding between CyCl and Keap1, which may compete for the Keap1-Nrf2 interaction, promote nuclear accumulation of Nrf2, and subsequentially transactivate Gpx4 and other antioxidant factors. Site-specific mutation of R415A in Keap1 significantly attenuates the protective effects of CyCl against Dox-induced cardiotoxicity. Taken together, the capability of deep-learning-assisted phenotypic screening in identifying promising lead compounds against DIC is exhibited, and new perspectives into drug discovery in the era of artificial intelligence are provided.


Subject(s)
Cardiotoxicity , Deep Learning , Animals , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Zebrafish/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Artificial Intelligence , Molecular Docking Simulation , Oxidative Stress , Doxorubicin/toxicity
3.
Medicine (Baltimore) ; 101(47): e32048, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36451440

ABSTRACT

RATIONALE: Penetrating brain injury (PBI) is a rare trauma that presents as a difficult and serious surgical emergency for neurosurgeons in clinical practice. Our patient was admitted with a PBI caused by a tire explosion, which is an extremely rare cause of injury. PATIENT CONCERNS: We report a case of a 28-year-old male patient who suffered a PBI when a tire exploded while it was being inflated with a high-pressure air pump. DIAGNOSES: The patient was diagnosed with PBI presenting with multiple comminuted skull fractures, massive bone fragments with foreign bodies penetrating the underlying brain tissue of the top right frontal bone, multiple cerebral contusions, and intracranial hematoma. INTERVENTIONS: Emergency combined multidisciplinary surgery was performed for the removal of the fragmented bone pieces, hematoma, and foreign bodies; decompression of the debridement flap; reconstruction of the anterior skull base; and repair of the dura mater. OUTCOMES: The patient was successfully resuscitated and discharged 1 month later and is now recovering well. LESSONS: Patients with PBI are critically ill. Therefore, timely, targeted examinations and appropriate multidisciplinary interventions through a green channel play a key role in assessing the condition, developing protocols, and preventing complications.


Subject(s)
Foreign Bodies , Fractures, Comminuted , Fractures, Multiple , Head Injuries, Penetrating , Male , Humans , Adult , Head Injuries, Penetrating/diagnostic imaging , Head Injuries, Penetrating/etiology , Head Injuries, Penetrating/surgery , Explosions , Resuscitation , Interdisciplinary Studies , Foreign Bodies/complications , Foreign Bodies/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...