Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Cell Death Discov ; 10(1): 228, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740771

ABSTRACT

Chemotherapy is an important therapuetic strategy for colorectal cancer (CRC), but chemoresistance severely affects its efficacy, and the underlying mechanism has not been fully elucidated. Increasing evidence suggests that lipid peroxidation imbalance-mediated ferroptosis is closely associated with chemoresistance. Hence, targeting ferroptosis pathways or modulating the tolerance to oxidative stress might be an effective strategy to reverse tumor chemoresistance. HtrA serine protease 1 (HTRA1) was screened out as a CRC progression- and chemoresistance-related gene. It is highly expressed in CRC cells and negatively correlated with the prognosis of CRC patients. Gain- and loss-of-function analyses demonstrated a stimulatory role of HTRA1 on the proliferation of CRC cells. The enrichment analysis of HTRA1-interacting proteins indicated the involvement of ferroptosis in the HTRA1-mediated chemoresistance. Moreover, electron microscope analysis, as well as the ROS and MDA levels in CRC cells also confirmed the effect of HTRA1 on ferroptosis. We also verified that HTRA1 could interact with SLC7A11 through its Kazal structural domain and up-regulate the expression of SLC7A11, which in turn inhibited the ferroptosis and leaded to the chemoresistance of CRC cells to 5-FU/L-OHP. Hence, we propose that HTRA1 may be a potential therapeutic target and a prognostic indicator in CRC.

3.
Article in English | MEDLINE | ID: mdl-38706357

ABSTRACT

BACKGROUND: Bone metabolic diseases are serious health issues worldwide. Angelica sinensis (AS) is traditionally used in Chinese medicine for treating bone metabolism diseases clinically. However, the mechanism of AS in regulating bone metabolism remains uncertain. OBJECTIVE: The current investigation was structured to elucidate the potential mechanisms of AS for modulating bone metabolism. METHODS: Firstly, targets of AS regulating bone metabolism were collected by network pharmacology. Then, the transcriptional regulation of RUNX2 was enriched as one of the key pathways for AS to regulate bone metabolism, constructing its metabolic network. Secondly, combining molecular docking, network efficiency, and network flux analyses, we conducted a quantitative evaluation of the metabolic network to reveal the potential mechanisms and components of AS regulating bone metabolism. Finally, we explored the effect of AS on the differentiation of osteoclasts from M-CSF and RANKL-induced RAW264.7 cells, as well as its impact on the osteogenic induction of MC3T3-E1 cells. We verified the mechanism and key targets of AS on bone metabolism using qRT-PCR. Furthermore, the key component was preliminarily validated through molecular dynamics simulation. RESULTS: Quantitative metabolic network of the transcriptional regulation of RUNX2 was constructed to illustrate the potential mechanism of AS for regulating bone metabolism, indicating that ferulic acid may be a pharmacological component of AS that interferes with bone metabolism. AS suppressed osteoclast differentiation in M-CSF and RANKL-induced RAW264.7 cells and reversed the expressions of osteoclastic differentiation markers, including RUNX2 and SRC. Additionally, AS induced osteogenic generation in MC3T3-E1 cells and reversed the expressions of markers associated with osteoblastic generation, such as RUNX2 and HDAC4. Molecular dynamics simulation displayed a strong binding affinity among ferulic acid, HDAC4 and SRC. CONCLUSION: This study reveals a systematic perspective on the intervention bone mechanism of AS by transcriptive regulation by RUNX2, guiding the clinical use of AS in treating diseases of the skeletal system.

4.
Front Microbiol ; 15: 1307966, 2024.
Article in English | MEDLINE | ID: mdl-38666262

ABSTRACT

Lanzhou lily (Lilium davidii var. willmottiae) is an exclusive sweet lily variety indigenous to China, which is susceptible to bulbous rot caused by fungal infection during storage. This experiment tests the pathogenicity of the pure culture isolated from the diseased tissue was confirmed in accordance with Koch's postulates, and the pathomycetes were identified based on their morphological and molecular characteristics. Furthermore, the biological characteristics of the pathogens were investigated, followed by an evaluation of the antifungal effects of three plant essential oils against them. The results showed that two strains of fungi were isolated from Lanzhou lily rot, which were identified as Fusarium oxysporum Schl. and Aspergillus sydowii (Bain. Et sart.). In addition, the pathogenicity of these two strains of fungi was demonstrated that only F. oxysporum induced rot with similar symptoms during the post-harvest storage period. The biological characteristics of F. oxysporum indicated the potato maltose agar and lily dextrose agar were identified as the most suitable media. Sucrose was determined to be the optimal carbon source, while ammonium nitrate was found to be the best nitrogen source for the growth of F. oxysporum. Mycelial growth and sporulation of F. oxysporum occurred at an optimum pH value of 6. Total darkness facilitated mycelial growth and conidial germination. The ideal temperature for growth was found to be 28°C, while relative humidity did not significantly impact mycelial growth; however, a relative humidity of 55% was most favorable for spore production. Among the three essential oils tested, cinnamon essential oil displayed superior antifungal efficacy against F. oxysporum, whereas angelica essential oil and tea tree essential oil also exhibited moderate inhibitory effects against this pathogen. This research provides valuable theoretical insights for disease control during the storage and transportation of Lanzhou lily.

5.
Biol Trace Elem Res ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492120

ABSTRACT

Exposure to metal mixtures compromises the immune system, with the complement system connecting innate and adaptive immunity. Herein, we sought to explore the relationships between blood cell metal mixtures and the third and fourth components of serum complement (C3, C4). A total of 538 participants were recruited in November 2017, and 289 participants were followed up in November 2021. We conducted a cross-sectional analysis at baseline and a longitudinal analysis over 4 years. Least Absolute Shrinkage and Selection Operator (LASSO) was employed to identify the primary metals related to serum C3, C4; generalized linear model (GLM) was further used to evaluate the cross-sectional associations of the selected metals and serum C3, C4. Furthermore, participants were categorized into three groups according to the percentage change in metal concentrations over 4 years. GLM was performed to assess the associations between changes in metal concentrations and changes in serum C3, C4 levels. At baseline, each 1-unit increase in log10-transformed in magnesium, manganese, copper, rubidium, and lead was significantly associated with a change in serum C3 of 0.226 (95% CI: 0.146, 0.307), 0.055 (95% CI: 0.022, 0.088), 0.113 (95% CI: 0.019, 0.206), - 0.173 (95% CI: - 0.262, - 0.083), and - 0.020 (95% CI: - 0.039, - 0.001), respectively. Longitudinally, decreased copper concentrations were negatively associated with an increment in serum C3 levels, while decreased lead concentrations were positively associated with an increment in serum C3 levels. However, no metal was found to be primarily associated with serum C4 in LASSO, so we did not further explore the relationship between them. Our research indicates that copper and lead may affect complement system homeostasis by influencing serum C3 levels. Further investigation is necessary to elucidate the underlying mechanisms.

6.
Hepatology ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377465

ABSTRACT

BACKGROUND AND AIMS: Lymph node metastasis is a significant risk factor for patients with cholangiocarcinoma, but the mechanisms underlying cholangiocarcinoma colonization in the lymph node microenvironment remain unclear. We aimed to determine whether metabolic reprogramming fueled the adaptation and remodeling of cholangiocarcinoma cells to the lymph node microenvironment. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing of primary tumor lesions and paired lymph node metastases from patients with cholangiocarcinoma and revealed significantly reduced intertumor heterogeneity and syntropic lipid metabolic reprogramming of cholangiocarcinoma after metastasis to lymph nodes, which was verified by pan-cancer single-cell RNA sequencing analysis, highlighting the essential role of lipid metabolism in tumor colonization in lymph nodes. Metabolomics and in vivo CRISPR/Cas9 screening identified PPARγ as a crucial regulator in fueling cholangiocarcinoma colonization in lymph nodes through the oleic acid-PPARγ-fatty acid-binding protein 4 positive feedback loop by upregulating fatty acid uptake and oxidation. Patient-derived organoids and animal models have demonstrated that blocking this loop impairs cholangiocarcinoma proliferation and colonization in the lymph node microenvironment and is superior to systemic inhibition of fatty acid oxidation. PPARγ-regulated fatty acid metabolic reprogramming in cholangiocarcinoma also contributes to the immune-suppressive niche in lymph node metastases by producing kynurenine and was found to be associated with tumor relapse, immune-suppressive lymph node microenvironment, and poor immune checkpoint blockade response. CONCLUSIONS: Our results reveal the role of the oleic acid-PPARγ-fatty acid-binding protein 4 loop in fueling cholangiocarcinoma colonization in lymph nodes and demonstrate that PPARγ-regulated lipid metabolic reprogramming is a promising therapeutic target for relieving cholangiocarcinoma lymph node metastasis burden and reducing further progression.

7.
Am J Pathol ; 194(6): 1078-1089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38417697

ABSTRACT

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Ferroptosis , Reactive Oxygen Species , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Animals , Humans , Mice , Male , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Microvessels/pathology , Microvessels/metabolism , Iron/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology
8.
Curr Eye Res ; 49(4): 368-379, 2024 04.
Article in English | MEDLINE | ID: mdl-38164922

ABSTRACT

PURPOSE: Circular RNAs (circRNAs) are products of alternative splicing with roles as competitive endogenous RNAs or microRNA sponges, regulating gene expression and biological processes. However, the involvement of circRNAs in herpes simplex keratitis remains largely unexplored. METHODS: This study examines circRNA and miRNA expression profiles in primary human corneal epithelial cells infected with HSV-1, compared to uninfected controls, using microarray analysis. Bioinformatic analysis predicted the potential function of the dysregulated circRNAs and microRNA response elements (MREs) in these circRNAs, forming an interaction network between dysregulated circRNAs and miRNAs. RESULTS: A total of 332 circRNAs and 16 miRNAs were upregulated, while 80 circRNAs and six miRNAs were downregulated (fold change ≥2.0 and p < 0.05). Gene ontology (GO) and KEGG pathway analyses were performed on parental genes of dysregulated circRNAs to uncover potential functions in HSV-1 infection. Notably, miR-181b-5p, miR-338-3p, miR-635, and miR-222-3p emerged as pivotal miRNAs interacting with multiple dysregulated circRNAs. CONCLUSIONS: This comprehensive study offers insights into differentially expressed circRNAs and miRNAs during HSV-1 infection in corneal epithelial cells, shedding light on circRNA-miRNA interactions' potential role in herpes simplex keratitis pathogenesis.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Keratitis, Herpetic , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Herpesvirus 1, Human/genetics , Epithelial Cells/metabolism , Keratitis, Herpetic/genetics
9.
J Mater Chem B ; 12(5): 1317-1329, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38229564

ABSTRACT

Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.


Subject(s)
Photochemotherapy , Porphyrins , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Copper/pharmacology , Porphyrins/pharmacology , Reactive Oxygen Species , Glutathione , Bacteria , Biofilms
10.
J Assist Reprod Genet ; 41(3): 673-681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277112

ABSTRACT

BACKGROUND: Inappropriate pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) are both linked to preterm birth (PTB); however, which one plays a dominant role in PTB risk is not yet sure. We aimed to evaluate the combined effect of pre-pregnancy BMI and GWG on the risk of PTB in singleton pregnancies conceived both spontaneously and through assisted reproductive technology (ART). METHODS: The data included all mothers (n = 17,540,977) who had a live singleton birth from the US National Vital Statistics System (NVSS) 2015-2019. Logistic regression models, quantile-g-computation, and generalized additive model were used to analyze the combined association of pre-pregnancy BMI and GWG with PTB. RESULTS: The singleton PTB rate was significantly higher in ART pregnancies (11.5%) than in non-ART pregnancies (7.9%). When compared to those women with pre-pregnancy normal weight and GWG within Institute of Medicine (IOM) guidelines, the highest PTB risk was observed in non-ART women with pre-pregnancy underweight and GWG below IOM guidelines (aOR 2.56; 95% CI 2.53-2.60) and in ART women with pre-pregnancy obese and GWG below IOM guidelines (aOR 2.56; 95%CI 2.36-2.78). GWG dominated the combined effect with its joint effect coefficient of - 0.281 (P < 0.05) in non-ART women and - 0.108 (P < 0.05) in ART women. CONCLUSIONS: Inappropriate GWG played a dominant role in increasing the risk of PTB in both non-ART and ART populations. Counseling regarding pre-pregnancy BMI and especially GWG appears to be even more crucial for pregnancies conceived via ART, given their impact on PTB.


Subject(s)
Gestational Weight Gain , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Premature Birth/epidemiology , Body Mass Index , Pregnancy Outcome , Reproductive Techniques, Assisted/adverse effects , Birth Weight
11.
Front Public Health ; 11: 1241029, 2023.
Article in English | MEDLINE | ID: mdl-38152666

ABSTRACT

The outbreak of novel coronavirus pneumonia (COVID-19) is closely related to the intra-urban environment. It is important to understand the influence mechanism and risk characteristics of urban environment on infectious diseases from the perspective of urban environment composition. In this study, we used python to collect Sina Weibo help data as well as urban multivariate big data, and The random forest model was used to measure the contribution of each influential factor within to the COVID-19 outbreak. A comprehensive risk evaluation system from the perspective of urban environment was constructed, and the entropy weighting method was used to produce the weights of various types of risks, generate the specific values of the four types of risks, and obtain the four levels of comprehensive risk zones through the K-MEANS clustering of Wuhan's central urban area for zoning planning. Based on the results, we found: ①the five most significant indicators contributing to the risk of the Wuhan COVID-19 outbreak were Road Network Density, Shopping Mall Density, Public Transport Density, Educational Facility Density, Bank Density. Floor Area Ration, Poi Functional Mix ②After streamlining five indicators such as Proportion of Aged Population, Tertiary Hospital Density, Open Space Density, Night-time Light Intensity, Number of Beds Available in Designated Hospitals, the prediction accuracy of the random forest model was the highest. ③The spatial characteristics of the four categories of new crown epidemic risk, namely transmission risk, exposure risk, susceptibility risk and Risk of Scarcity of Medical Resources, were highly differentiated, and a four-level integrated risk zone was obtained by K-MEANS clustering. Its distribution pattern was in the form of "multicenter-periphery" gradient diffusion. For the risk composition of the four-level comprehensive zones combined with the internal characteristics of the urban environment in specific zones to develop differentiated control strategies. Targeted policies were then devised for each partition, offering a practical advantage over singular COVID-19 impact factor analyses. This methodology, beneficial for future public health crises, enables the swift identification of unique risk profiles in different partitions, streamlining the formulation of precise policies. The overarching goal is to maintain regular social development, harmonizing preventive measures and economic efforts.


Subject(s)
COVID-19 , Epidemics , Humans , Aged , COVID-19/epidemiology , Cities , SARS-CoV-2 , Disease Outbreaks
12.
J Mater Chem B ; 11(43): 10395-10403, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37876312

ABSTRACT

We have developed a targeted nano-drug delivery system that effectively harnesses the anti-tumor properties of trifluoperazine (TFP), while concurrently mitigating its side effects on the central nervous system. The manufacturing process entailed the preparation of mesoporous silica nanoparticles (MSN-NH2), followed by the loading of trifluoperazine into the pores of MSN-NH2 and then surface modification with polyethylene glycol (PEG) and anisamide (AA), resulting in the formation of TFP@MSN@PEG-AA (abbreviated as TMPA) nanoparticles. In vitro and in vivo anti-tumor activity and hemolysis experiments showed that TMPA had an excellent safety profile and a good anti-tumor effect. Importantly, the drug content of the TMPA nanoparticle group was found to be significantly lower than that of the TFP group in the mouse brain tissue as determined by High Performance Liquid Chromatography (HPLC) detection. Therefore, the developed drug delivery system achieved the goal of maintaining TFP's anti-tumor action while avoiding its negative effects on the central nervous system.


Subject(s)
Nanoparticles , Neoplasms , Mice , Animals , Silicon Dioxide/chemistry , Trifluoperazine , Drug Delivery Systems/methods , Nanoparticles/chemistry
13.
J Mater Chem B ; 11(42): 10108-10120, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37853796

ABSTRACT

Bacterial biofilm-associated infectious diseases remain serious menaces to human health. Recently, photodynamic therapy (PDT) has become a prospective strategy for combating biofilm infection. However, anaerobic conditions in a biofilm greatly inhibit its therapeutic efficacy. Here, a nanozyme-reinforced injectable hydrogel is prepared using Ca2+-crosslinked sodium alginate incorporated with photosensitizer-loaded MnO2 nanosheets and CaO2 nanoparticles for O2 self-sufficient PDT to eradicate biofilm infection. In our design, CaO2 reacts with water to produce locally concentrated H2O2, which could be catalyzed by MnO2 nanosheets (catalase-mimic nanozymes) to generate O2 and greatly relieve the hypoxic conditions in the biofilm, thus significantly strengthening PDT efficacy. In vitro assays confirmed that the hybrid hydrogel not only exhibits high-performance bactericidal activity in combating both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli but also shows great efficacy in eliminating biofilm infection. Moreover, benefiting from its good syringeability, the hybrid hydrogel is prone to fit irregular wounds and exhibits high efficiency in promoting wound healing in a biofilm-infected mice model. Besides, no obvious toxicity is detected in the hybrid hydrogel. Overall, we envision that our designed hydrogel could provide a prospective solution for combating biofilm-associated infections.


Subject(s)
Photochemotherapy , Staphylococcal Infections , Mice , Animals , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Manganese Compounds/therapeutic use , Hydrogen Peroxide/therapeutic use , Oxides/therapeutic use , Staphylococcal Infections/drug therapy , Biofilms
14.
J Hazard Mater ; 460: 132432, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37688869

ABSTRACT

The extensive exposure to per- and polyfluoroalkyl substances (PFASs) has raised public health concerns. The issue of PFAS exposures in women with twin pregnancies remains unresolved. To determine exposure profiles, the transplacental transfer efficiencies (TTEs) of PFASs and predictors were estimated. We found that serum PFASs were widely detected, with detection rates of over 50% for 12 PFASs in maternal serum throughout pregnancy. The majority of PFAS levels exhibited fair to good reproducibility (ICCs > 0.40). Moderate to low correlations were observed for most PFASs between twin cord serum and maternal serum at three trimesters (rs = 0.13-0.77, p values < 0.01). We first presented a U-shaped trend for TTEs with increasing chain length for perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in twins, even in twin sex subgroups. Further, we found that PC4 and PC5 (indicators of exposure to PFHxS and 6:2 Cl-PFESA) were positively associated with age (ß = 0.85, 1.30, and 1.36, respectively). Our findings suggested that there is moderate variability among certain PFASs and that these PFASs have the ability to cross the placental barrier. Exposure patterns were found to be associated with maternal age.


Subject(s)
Fluorocarbons , Pregnancy, Twin , Pregnancy , Humans , Female , Placenta , Reproducibility of Results , Carboxylic Acids
15.
Nutrients ; 15(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37686737

ABSTRACT

BACKGROUND: Neurodegenerative diseases (NDs) have posed significant challenges to public health, and it is crucial to understand their mechanisms in order to develop effective therapeutic strategies. Recent studies have highlighted the potential role of selenium in ND pathogenesis, as it plays a vital role in maintaining cellular homeostasis and preventing oxidative damage. However, a comprehensive analysis of the association between selenium and NDs is still lacking. METHOD: Five public databases, namely PubMed, Web of Science, EMBASE, Cochrane and Clinical Trials, were searched in our research. Random model effects were chosen, and Higgins inconsistency analyses (I2), Cochrane's Q test and Tau2 were calculated to evaluate the heterogeneity. RESULT: The association of selenium in ND patients with Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) was studied. A statistically significant relationship was only found for AD patients (SMD = -0.41, 95% CI (-0.64, -0.17), p < 0.001), especially for erythrocytes. However, no significant relationship was observed in the analysis of the other four diseases. CONCLUSION: Generally, this meta-analysis indicated that AD patients are strongly associated with lower selenium concentrations compared with healthy people, which may provide a clinical reference in the future. However, more studies are urgently needed for further study and treatment of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Selenium , Humans , Databases, Factual
16.
Environ Sci Technol ; 57(32): 11792-11802, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37534997

ABSTRACT

Cataract is one key cause of visual disability and blindness. Ambient particulate matter is more likely to increase cataract risk due to eye continuous exposure to the environment. However, less is known about whether long-term exposure to particulate matter 2.5 (PM2.5) is related to age-related cataracts. We conducted a population-based study among 22,298 adults from two multicenter cohort studies [China Family Panel Studies (CFPS) and Chinese Longitudinal Healthy Longevity Survey (CLHLS)]. The associations between PM2.5 and age-related cataracts were analyzed by Cox proportional hazard regression models, which were also stratified according to demographic characteristics. The restricted cubic spline (RCS) model was used to explore the dose-response relationships between PM2.5 and age-related cataracts. The population attributable fraction (PAF) was calculated to assess the burden of age-related cataracts that can be attributed to PM2.5. In the final analysis, 1897 participants reported age-related cataracts during follow-up. Long-term exposure to PM2.5 was associated with age-related cataracts, with HRs of 1.165 (1.130, 1.201), 1.138 (1.103, 1.173), and 1.091 (1.057, 1.126) for per 10 µg/m3 increase at one-, two-, and three-year before the end of follow-up, respectively. Furthermore, associations between PM2.5 and age-related cataracts were also demonstrated in RCS models. The PAF of age-related cataracts to PM2.5 in the total participants was 24.63%. Our research found that long-term exposure to PM2.5 may increase the risk of age-related cataracts, and age-related cataracts should be considered as an important public health issue due to air pollution.


Subject(s)
Air Pollutants , Air Pollution , Cataract , Middle Aged , Humans , Aged , Air Pollutants/analysis , East Asian People , Particulate Matter/analysis , Air Pollution/analysis , Cohort Studies , China/epidemiology , Cataract/epidemiology , Environmental Exposure/analysis
17.
Front Robot AI ; 10: 1224115, 2023.
Article in English | MEDLINE | ID: mdl-37575369

ABSTRACT

Deep-sea manganese nodules are abundant in the ocean, with high exploitation potential and commercial value, and have become mineral resources that coastal countries compete to develop. The pipeline-lifting mining system is the most promising deep-sea mining system at present. A deep-sea mining vehicle is the core equipment of this system. Mining quality and efficiency rely on mining vehicles to a great extent. According to the topographic and geomorphic environmental characteristics of deep-sea manganese nodules at the bottom of the ocean, a new deep-sea mining system based on an autonomous manganese nodule mining vehicle is proposed in this paper. According to the operating environment and functional requirements of the seabed, a new mining method is proposed, and the global traverse path planning research of the autonomous manganese nodule mining vehicle based on this mining method is carried out. The arc round-trip acquisition path planning method is put forward, and the simulation verification shows that the method effectively solves the problems of low efficiency of mining vehicle traversing acquisition and obstacle avoidance.

18.
Heliyon ; 9(4): e15400, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37101624

ABSTRACT

Microorganisms play an important role in many physiological functions. Many studies have found that bacteria also regulate cancer susceptibility and tumor progression by affecting some metabolic or immune system signaling pathways. However, current bacterial detection methods are inaccurate or inefficient. Thus, we constructed a deep neural network (AIBISI) based on hematoxylin and eosin (H&E)-stained pathology slides to predict and visualize bacterial infection. Our model performance achieved as high as 0.81 of AUC (area under the ROC curve) within cancer type. We also built a pan-cancer model to predict bacterial infection across cancer types. To facilitate clinical usage, AIBISI visualized image areas affected by possible infection. Importantly, we successfully validated our model (AUC = 0.755) in pathological images from an independent patient cohort of stomach cancer (n = 32). To our best knowledge, this is the first artificial intelligence (AI)-based model to investigate bacterial infection in pathology images and has the potential to enable fast clinical decision related to pathogens in tumors.

19.
J Ethnopharmacol ; 312: 116539, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37088240

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dachaihu Decoction (DD), a classic Chinese herbal prescription, is composed of radix of Bupleurum chinense DC. (Chaihu), radix of Scutellaria baicalensis Georgi (Huangqin), radix of Paeonia lactiflora Pall. (Baishao), rhizoma of Pinellia ternata (Thunb.) Breit. (Banxia), fructus of Citrus aurantium L. (Zhishi), rhizoma of Zingiber officinale Rosc. (Shengjiang), fructus of Ziziphus jujuba Mill. (Dazao) and rhizoma of Rheum officinale Baill. (Dahuang). DD has the traditional effects of soothing the liver, relieving depression and clearing heat from the stomach, and is mainly used to treat heat stagnation in the liver and stomach. AIM OF THE STUDY: Dachaihu decoction (DD), a classic prescription commonly used in clinical practice for the treatment of pancreatitis and cholecystitis. Although its pharmacological effects are clear, the efficacy components and mechanism of action remain intricate and difficult to clarify. MATERIALS AND METHODS: The action targets and components of the anti-inflammatory activity of DD were predicted by network pharmacology; the effective components and targets were verified by HPLC and qPCR; the efficacy markers of DD were further screened by in vitro experiments; the pharmacological value of DD and its components compatibility were evaluated by in vitro experiments. RESULTS: The key targets MMP9, JAK2, MAP2K1 and NR3C1 were screened by network pharmacology; HPLC analysis showed that paeoniflorin, naringin, hesperidin, neohesperidin, baicalin, wogonoside, baicalein and saikosaponin B2 were identified as potential efficacy markers of DD; molecular docking combined with qPCR verification suggested that baicalin, naringin, neohesperidin, hesperidin and baicalein and wogonoside had certain ability to regulate above targets; in vitro studies revealed that paeoniflorin, naringin, hesperidin, neohesperidin, baicalin, wogonoside, baicalein and saikosaponin B2 could inhibit the release of NO, pancreatic lipase and α-glucosidase; after comprehensive comparison and analysis, naringin, hesperidin, neohesperidin, baicalin, wogonoside, baicalein and saikosaponin B2 were selected as the efficacy markers of DD; in vivo studies indicated that DD and its efficacy markers (components compatibility) had definite therapeutic effects on guinea pigs with cholecystitis. CONCLUSIONS: The efficacy markers of DD including naringin, hesperidin, neohesperidin, baicalin, wogonoside, baicalein and saikosaponin B2 can be used as components compatibility to exert anti-inflammatory activity. In addition, a method for obtaining the compatibility of efficacy markers by simplifying the prescription is initially established.


Subject(s)
Drugs, Chinese Herbal , Hesperidin , Animals , Guinea Pigs , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166672, 2023 06.
Article in English | MEDLINE | ID: mdl-36871753

ABSTRACT

BACKGROUND: Astrocyte activation, which is polarized into classical neurotoxic A1, neuroprotective A2, A-pan, etc., is thought to be involved in the transition from acute to chronic post-thoracotomy pain. The C3aR receptor associated with astrocyte-neuron and -microglia interactions is necessary for A1 astrocytes polarization. This study aimed to determine whether C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 expression in a rat thoracotomy pain model. METHODS: A rat thoracotomy pain model was employed. The mechanical withdraw threshold was measured to evaluate pain behavior. Lipopolysaccharide (LPS) was injected intraperitoneally to induce A1. Intrathecal injection of AAV2/9-rC3ar1 shRNA-GFAP was used to knock down in vivo C3aR expression in astrocytes. The expression of associated phenotypic markers before and after intervention was assessed by RT-PCR, western blot, co-immunofluorescence, and single-cell RNA sequencing. RESULTS: C3aR downregulation was found to inhibit LPS-induced A1 astrocytes activation, decrease the expression of C3aR, C3, and GFAP, which were activated from acute to chronic pain, and alleviate the mechanical withdrawal threshold and chronic pain incidence. In addition, more A2 astrocytes were activated in the model group that did not develop chronic pain. C3aR downregulation increased the number of A2 astrocytes upon LPS exposure. Knockdown of C3aR also decreased the activation of M1 microglia induced by LPS or thoracotomy. CONCLUSIONS: Our study confirmed that C3aR-induced A1 polarization contributes to chronic post-thoracotomy pain. Inhibition of A1 activation via C3aR downregulation increases anti-inflammatory A2 and decreases pro-inflammatory M1 activation, which may also be involved in the mechanism of chronic post-thoracotomy pain.


Subject(s)
Astrocytes , Chronic Pain , Animals , Male , Rats , Astrocytes/metabolism , Chronic Pain/metabolism , Lipopolysaccharides/pharmacology , Microglia/metabolism , Thoracotomy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...