Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
J Neural Eng ; 21(4)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959877

ABSTRACT

Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.


Subject(s)
Amygdala , Arm , Beta Rhythm , Psychomotor Performance , Humans , Amygdala/physiology , Male , Female , Adult , Beta Rhythm/physiology , Psychomotor Performance/physiology , Arm/physiology , Young Adult , Movement/physiology , Middle Aged , Drug Resistant Epilepsy/physiopathology , Electroencephalography/methods
2.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005362

ABSTRACT

The lateral intraparietal cortex (LIP) located within the posterior parietal cortex (PPC) is an important area for the transformation of spatial information into accurate saccadic eye movements. Despite extensive research, we do not fully understand the functional anatomy of intended movement directions within LIP. This is in part due to technical challenges. Electrophysiology recordings can only record from small regions of the PPC, while fMRI and other whole-brain techniques lack sufficient spatiotemporal resolution. Here, we use functional ultrasound imaging (fUSI), an emerging technique with high sensitivity, large spatial coverage, and good spatial resolution, to determine how movement direction is encoded across PPC. We used fUSI to record local changes in cerebral blood volume in PPC as two monkeys performed memory-guided saccades to targets throughout their visual field. We then analyzed the distribution of preferred directional response fields within each coronal plane of PPC. Many subregions within LIP demonstrated strong directional tuning that was consistent across several months to years. These mesoscopic maps revealed a highly heterogenous organization within LIP with many small patches of neighboring cortex encoding different directions. LIP had a rough topography where anterior LIP represented more contralateral upward movements and posterior LIP represented more contralateral downward movements. These results address two fundamental gaps in our understanding of LIP's functional organization: the neighborhood organization of patches and the broader organization across LIP. These findings were achieved by tracking the same LIP populations across many months to years and developing mesoscopic maps of direction specificity previously unattainable with fMRI or electrophysiology methods.

3.
J Neural Eng ; 21(4)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38914073

ABSTRACT

Objective.Can we classify movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between 'Go' and 'No-go' trials in a Go/No-go arm-reaching task.Approach.Our approach centers on capturing the modulation of beta-band (13-30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a 'center-out' Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between 'Go' and 'No-go' trials. The accuracy of five different discriminant functions was evaluated using cross-validation.Main results.The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants.Significance.This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain-computer interface applications.


Subject(s)
Arm , Beta Rhythm , Hippocampus , Humans , Hippocampus/physiology , Female , Beta Rhythm/physiology , Male , Adult , Arm/physiology , Psychomotor Performance/physiology , Movement/physiology , Electroencephalography/methods , Electroencephalography/classification , Principal Component Analysis , Young Adult , Reproducibility of Results , Middle Aged
4.
J Biomed Opt ; 29(6): 067001, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826808

ABSTRACT

Significance: In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim: Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach: The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results: Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions: Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.


Subject(s)
Cerebrovascular Circulation , Equipment Design , Spectrum Analysis , Humans , Cerebrovascular Circulation/physiology , Spectrum Analysis/instrumentation , Cost-Benefit Analysis , Reproducibility of Results , Wearable Electronic Devices , Signal-To-Noise Ratio , Lasers , Brain/blood supply , Brain/diagnostic imaging , Brain/physiology , Laser Speckle Contrast Imaging/instrumentation
5.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798438

ABSTRACT

Intra-cortical microstimulation (ICMS) is a technique to provide tactile sensations for a somatosensory brain-machine interface (BMI). A viable BMI must function within the rich, multisensory environment of the real world, but how ICMS is integrated with other sensory modalities is poorly understood. To investigate how ICMS percepts are integrated with visual information, ICMS and visual stimuli were delivered at varying times relative to one another. Both visual context and ICMS current amplitude were found to bias the qualitative experience of ICMS. In two tetraplegic participants, ICMS and visual stimuli were more likely to be experienced as occurring simultaneously when visual stimuli were more realistic, demonstrating an effect of visual context on the temporal binding window. The peak of the temporal binding window varied but was consistently offset from zero, suggesting that multisensory integration with ICMS can suffer from temporal misalignment. Recordings from primary somatosensory cortex (S1) during catch trials where visual stimuli were delivered without ICMS demonstrated that S1 represents visual information related to ICMS across visual contexts.

6.
Nat Hum Behav ; 8(6): 1136-1149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740984

ABSTRACT

Speech brain-machine interfaces (BMIs) translate brain signals into words or audio outputs, enabling communication for people having lost their speech abilities due to diseases or injury. While important advances in vocalized, attempted and mimed speech decoding have been achieved, results for internal speech decoding are sparse and have yet to achieve high functionality. Notably, it is still unclear from which brain areas internal speech can be decoded. Here two participants with tetraplegia with implanted microelectrode arrays located in the supramarginal gyrus (SMG) and primary somatosensory cortex (S1) performed internal and vocalized speech of six words and two pseudowords. In both participants, we found significant neural representation of internal and vocalized speech, at the single neuron and population level in the SMG. From recorded population activity in the SMG, the internally spoken and vocalized words were significantly decodable. In an offline analysis, we achieved average decoding accuracies of 55% and 24% for each participant, respectively (chance level 12.5%), and during an online internal speech BMI task, we averaged 79% and 23% accuracy, respectively. Evidence of shared neural representations between internal speech, word reading and vocalized speech processes was found in participant 1. SMG represented words as well as pseudowords, providing evidence for phonetic encoding. Furthermore, our decoder achieved high classification with multiple internal speech strategies (auditory imagination/visual imagination). Activity in S1 was modulated by vocalized but not internal speech in both participants, suggesting no articulator movements of the vocal tract occurred during internal speech production. This work represents a proof-of-concept for a high-performance internal speech BMI.


Subject(s)
Brain-Computer Interfaces , Parietal Lobe , Speech , Humans , Speech/physiology , Male , Parietal Lobe/physiology , Parietal Lobe/physiopathology , Adult , Neurons/physiology , Quadriplegia/physiopathology , Female , Somatosensory Cortex/physiology , Somatosensory Cortex/physiopathology , Speech Perception/physiology
7.
Sci Transl Med ; 16(749): eadj3143, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809965

ABSTRACT

Visualization of human brain activity is crucial for understanding normal and aberrant brain function. Currently available neural activity recording methods are highly invasive, have low sensitivity, and cannot be conducted outside of an operating room. Functional ultrasound imaging (fUSI) is an emerging technique that offers sensitive, large-scale, high-resolution neural imaging; however, fUSI cannot be performed through the adult human skull. Here, we used a polymeric skull replacement material to create an acoustic window compatible with fUSI to monitor adult human brain activity in a single individual. Using an in vitro cerebrovascular phantom to mimic brain vasculature and an in vivo rodent cranial defect model, first, we evaluated the fUSI signal intensity and signal-to-noise ratio through polymethyl methacrylate (PMMA) cranial implants of different thicknesses or a titanium mesh implant. We found that rat brain neural activity could be recorded with high sensitivity through a PMMA implant using a dedicated fUSI pulse sequence. We then designed a custom ultrasound-transparent cranial window implant for an adult patient undergoing reconstructive skull surgery after traumatic brain injury. We showed that fUSI could record brain activity in an awake human outside of the operating room. In a video game "connect the dots" task, we demonstrated mapping and decoding of task-modulated cortical activity in this individual. In a guitar-strumming task, we mapped additional task-specific cortical responses. Our proof-of-principle study shows that fUSI can be used as a high-resolution (200 µm) functional imaging modality for measuring adult human brain activity through an acoustically transparent cranial window.


Subject(s)
Brain , Skull , Humans , Brain/diagnostic imaging , Animals , Skull/diagnostic imaging , Ultrasonography/methods , Rats , Acoustics , Phantoms, Imaging , Polymethyl Methacrylate/chemistry , Signal-To-Noise Ratio , Male
8.
Contemp Clin Trials ; 143: 107580, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796099

ABSTRACT

BACKGROUND: Quality study monitoring is fundamental to patient safety and data integrity. Regulators and industry consortia have increasingly advocated for risk-based monitoring (RBM) and central statistical monitoring (CSM) for more effective and efficient monitoring. Assessing which statistical methods underpin these approaches can best identify unusual data patterns in multi-center clinical trials that may be driven by potential systematic errors is important. METHODS: We assessed various CSM techniques, including cross-tests, fixed-effects, mixed-effects, and finite mixture models, across scenarios with different sample sizes, contamination rates, and overdispersion via simulation. Our evaluation utilized threshold-independent metrics such as the area under the curve (AUC) and average precision (AP), offering a fuller picture of CSM performance. RESULTS: All CSM methods showed consistent characteristics across center sizes or overdispersion. The adaptive finite mixture model outperformed others in AUC and AP, especially at 30% contamination, upholding high specificity unless converging to a single-component model due to low contamination or deviation. The mixed-effects model performed well at lower contamination rates. However, it became conservative in specificity and exhibited declined performance for binary outcomes under high deviation. Cross-tests and fixed-effects methods underperformed, especially when deviation increased. CONCLUSION: Our evaluation explored the merits and drawbacks of multiple CSM methods, and found that relying on sensitivity and specificity alone is likely insufficient to fully measure predictive performance. The finite mixture method demonstrated more consistent performance across scenarios by mitigating the influence of outliers. In practice, considering the study-specific costs of false positives/negatives with available resources for monitoring is important.

9.
Neurosci Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582242

ABSTRACT

The Stroop Task is a well-known neuropsychological task developed to investigate conflict processing in the human brain. Our group has utilized direct intracranial neural recordings in various brain regions during performance of a modified color-word Stroop Task to gain a mechanistic understanding of non-emotional human conflict processing. The purpose of this review article is to: 1) synthesize our own studies into a model of human conflict processing, 2) review the current literature on the Stroop Task and other conflict tasks to put our research in context, and 3) describe how these studies define a network in conflict processing. The figures presented are reprinted from our prior publications and key publications referenced in the manuscript. We summarize all studies to date that employ invasive intracranial recordings in humans during performance of conflict-inducing tasks. For our own studies, we analyzed local field potentials (LFPs) from patients with implanted stereotactic electroencephalography (SEEG) electrodes, and we observed intracortical oscillation patterns as well as intercortical temporal relationships in the hippocampus, amygdala, and orbitofrontal cortex (OFC) during the cue-processing phase of a modified Stroop Task. Our findings suggest that non-emotional human conflict processing involves modulation across multiple frequency bands within and between brain structures.

10.
Front Neurosci ; 18: 1372315, 2024.
Article in English | MEDLINE | ID: mdl-38560047

ABSTRACT

Introduction: Deep brain stimulation (DBS) has shown remarkable success treating neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, epilepsy, and obsessive-compulsive disorder. DBS is now being explored to improve cognitive and functional outcomes in other psychiatric conditions, such as those characterized by reduced N-methyl-D-aspartate (NMDA) function (i.e., schizophrenia). While DBS for movement disorders generally involves high-frequency (>100 Hz) stimulation, there is evidence that low-frequency stimulation may have beneficial and persisting effects when applied to cognitive brain networks. Methods: In this study, we utilize a novel technology, functional ultrasound imaging (fUSI), to characterize the cerebrovascular impact of medial septal nucleus (MSN) DBS under conditions of NMDA antagonism (pharmacologically using Dizocilpine [MK-801]) in anesthetized male mice. Results: Imaging from a sagittal plane across a variety of brain regions within and outside of the septohippocampal circuit, we find that MSN theta-frequency (7.7 Hz) DBS increases hippocampal cerebral blood volume (CBV) during and after stimulation. This effect was not present using standard high-frequency stimulation parameters [i.e., gamma (100 Hz)]. Discussion: These results indicate the MSN DBS increases circuit-specific hippocampal neurovascular activity in a frequency-dependent manner and does so in a way that continues beyond the period of electrical stimulation.

11.
Brain Sci ; 14(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539589

ABSTRACT

Eating disorders are a group of psychiatric conditions that involve pathological relationships between patients and food. The most prolific of these disorders are anorexia nervosa, bulimia nervosa, and binge eating disorder. The current standard of care involves psychotherapy, pharmacotherapy, and the management of comorbid conditions, with nutritional rehabilitation reserved for severe cases of anorexia nervosa. Unfortunately, many patients often fail to respond, leaving a concerning treatment gap between the current and requisite treatments for eating disorders. To better understand the neurobiology underlying these eating disorders, investigations have been undertaken to characterize the activity of various neural networks, primarily those activated during tasks of executive inhibition, reward processing, and self-reference. Various neuromodulatory techniques have been proposed to stimulate these networks with the goal of improving patients' BMI and mental health. The aim of this review is to compile a comprehensive summarization of the current literature regarding the underlying neural connectivity of anorexia nervosa, bulimia nervosa, and binge eating disorder as well as the numerous neuromodulatory modalities that have been investigated. Importantly, we aimed to summarize the most significant clinical trials to date as well as to provide an updated assessment of the role of deep brain stimulation, summarizing numerous recently published clinical studies that have greatly contributed to the literature. In this review, we found therapeutic evidence for transcranial magnetic stimulation and transcranial direct current stimulation in treating individuals suffering from anorexia nervosa, bulimia nervosa, and binge eating disorder. We also found significant evidence for the role of deep brain stimulation, particularly as an escalatory therapy option for the those who failed standard therapy. Finally, we hope to provide promising directions for future clinical investigations.

12.
ArXiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38351942

ABSTRACT

In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF non-invasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. This study aims to introduce a compact speckle visibility spectroscopy (SVS) device designed for non-invasive CBF measurements, offering cost-effectiveness and scalability while tracking CBF with remarkable sensitivity and temporal resolution. The wearable hardware has a modular design approach consisting solely of a laser diode as the source and a meticulously selected board camera as the detector. They both can be easily placed on a subject's head to measure CBF with no additional optical elements. The SVS device can achieve a sampling rate of 80 Hz with minimal susceptibility to external disturbances. The device also achieves better SNR compared with traditional fiber-based SVS devices, capturing about 70 times more signal and showing superior stability and reproducibility. It is designed to be paired and distributed in multiple configurations around the head, and measure signals that exceed the quality of prior optical CBF measurement techniques. Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing non-invasive cerebral monitoring technologies.

13.
Front Comput Neurosci ; 18: 1263311, 2024.
Article in English | MEDLINE | ID: mdl-38390007

ABSTRACT

Objective: Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject's own hippocampal spatiotemporal neural codes for memory. Approach: We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results: MDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation. Significance: These results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.

14.
PLoS One ; 19(2): e0293130, 2024.
Article in English | MEDLINE | ID: mdl-38306348

ABSTRACT

Vaccination is the most effective strategy for preventing infectious diseases such as COVID-19. College students are important targets for COVID-19 vaccines given this population's lower intentions to be vaccinated; however, limited research has focused on international college students' vaccination status. This study explored how psychosocial factors from the Theory of Planned Behavior (TPB; attitudes, perceived behavioral control, subjective norms, and behavioral intentions) related to students' receipt of the full course of COVID-19 vaccines and their plans to receive a booster. Students were recruited via Amazon mTurk and the Office of the Registrar at a U.S. state university. We used binary logistic regression to examine associations between students' psychosocial factors and full COVID-19 vaccination status. Hierarchical multiple regression was employed to evaluate relationships between these factors and students' intentions to receive a booster. The majority of students in our sample (81% of international students and 55% of domestic students) received the complete vaccination series. Attitudes were significantly associated with all students' full vaccination status, while perceived behavioral control was significantly associated with domestic students' status. Students' intentions to receive COVID-19 vaccines were significantly correlated with their intentions to receive a booster, with international students scoring higher on booster intentions. Among the combined college student population, attitudes, intentions to receive COVID-19 vaccines, and subjective norms were significantly related to students' intentions to receive a booster. Findings support the TPB's potential utility in evidence-based interventions to enhance college students' COVID-19 vaccination rates. Implications for stakeholders and future research directions are discussed.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , United States , Intention , Theory of Planned Behavior , Health Knowledge, Attitudes, Practice , Surveys and Questionnaires , COVID-19/epidemiology , COVID-19/prevention & control , Students/psychology , Vaccination/psychology
15.
Neurosci Res ; 204: 1-13, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38278220

ABSTRACT

Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.


Subject(s)
Brain-Computer Interfaces , Somatosensory Cortex , Humans , Somatosensory Cortex/physiology , Animals , Brain Mapping/methods
16.
Pharm Stat ; 23(4): 466-479, 2024.
Article in English | MEDLINE | ID: mdl-38282048

ABSTRACT

As an alternative to the Frequentist p-value, the Bayes factor (or ratio of marginal likelihoods) has been regarded as one of the primary tools for Bayesian hypothesis testing. In recent years, several researchers have begun to re-analyze results from prominent medical journals, as well as from trials for FDA-approved drugs, to show that Bayes factors often give divergent conclusions from those of p-values. In this paper, we investigate the claim that Bayes factors are straightforward to interpret as directly quantifying the relative strength of evidence. In particular, we show that for nested hypotheses with consistent priors, the Bayes factor for the null over the alternative hypothesis is the posterior mean of the likelihood ratio. By re-analyzing 39 results previously published in the New England Journal of Medicine, we demonstrate how the posterior distribution of the likelihood ratio can be computed and visualized, providing useful information beyond the posterior mean alone.


Subject(s)
Bayes Theorem , Likelihood Functions , Humans , Data Interpretation, Statistical , Models, Statistical
17.
Turk Neurosurg ; 34(1): 128-134, 2024.
Article in English | MEDLINE | ID: mdl-38282591

ABSTRACT

AIM: To investigate the relationship between planned drill approach angle and angular deviation of the stereotactically placed intracranial electrode tips. MATERIAL AND METHODS: Stereotactic electrode implantation was performed in 13 patients with drug resistant epilepsy. A total of 136 electrodes were included in our analysis. Stereotactic targets were planned on pre-operative magnetic resonance imaging (MRI) scans and implantation was carried out using a Cosman-Roberts-Wells stereotactic frame with the Ad-Tech drill guide and electrodes. Post implant electrode angles in the axial, coronal, and sagittal planes were determined from post-operative computerized tomography (CT) scans and compared with planned angles using Bland-Altman plots and linear regression. RESULTS: Qualitative assessment of correlation plots between planned and actual angles demonstrated a linear relationship for axial, coronal, and sagittal planes, with no overt angular deflection for any magnitude of the planned angle. CONCLUSION: The accuracy of CRW frame-based electrode placement using the Ad-Tech drill guide and electrodes is not significantly affected by the magnitude of the planning angle. Based on our results, oblique electrode insertion is a safe and accurate procedure.


Subject(s)
Drug Resistant Epilepsy , Stereotaxic Techniques , Humans , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Imaging, Three-Dimensional , Electrodes, Implanted , Magnetic Resonance Imaging
19.
J Biopharm Stat ; 34(3): 394-412, 2024 May.
Article in English | MEDLINE | ID: mdl-37157818

ABSTRACT

Bayesian predictive probabilities have become a ubiquitous tool for design and monitoring of clinical trials. The typical procedure is to average predictive probabilities over the prior or posterior distributions. In this paper, we highlight the limitations of relying solely on averaging, and propose the reporting of intervals or quantiles for the predictive probabilities. These intervals formalize the intuition that uncertainty decreases with more information. We present four different applications (Phase 1 dose escalation, early stopping for futility, sample size re-estimation, and assurance/probability of success) to demonstrate the practicality and generality of the proposed approach.


Subject(s)
Models, Statistical , Research Design , Humans , Bayes Theorem , Uncertainty , Probability , Sample Size
20.
Neurosurgery ; 94(2): 379-388, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37728367

ABSTRACT

BACKGROUND AND OBJECTIVES: Neurological manifestations may occur in more than 80% of patients hospitalized with COVID-19 infection, including severe disruptions of the central nervous system (CNS), such as strokes, encephalitis, or seizures. Although the primary pathophysiological mechanism for the effects of COVID-19 in CNS remains unknown, evidence exists for both direct injury from neuroinvasion and indirect effects from disruptions in systemic inflammatory and coagulation pathways. In this study, we analyzed CNS tissue from living patients to better understand these processes. METHODS: With institutional review board approval and patient consent, samples that would be otherwise discarded from patients with active or recent (within 6 days of surgery) COVID-19 infection undergoing neurosurgical intervention were collected and tested for the presence of SARS-CoV-2 using immunohistochemistry, in situ hybridization, electron microscopy, and reverse transcription polymerase chain reaction. RESULTS: Five patients with perioperative mild-to-moderate COVID-19 infection met inclusion criteria (2 male, 3 female; mean age 38.8 ± 13.5 years). Neurosurgical diagnoses included a glioblastoma, a ruptured arteriovenous malformation, a ruptured posterior inferior cerebellar artery aneurysm, a middle cerebral artery occlusion, and a hemorrhagic pontine cavernous malformation. Samples analyzed included the frontal lobe cortex, olfactory nerve, arteriovenous malformation/temporal lobe parenchyma, middle cerebral artery, cerebellum, and cavernous malformation/brainstem parenchyma. Testing for the presence of SARS-CoV-2 was negative in all samples. CONCLUSION: The CNS is likely not a significant viral reservoir during mild-to-moderate COVID-19 infection, although direct neuroinvasion is not definitively excluded. Additional testing to help elucidate the relative contributions of direct and indirect pathways for CNS injury from COVID is warranted.


Subject(s)
Arteriovenous Malformations , COVID-19 , Humans , Male , Female , Adult , Middle Aged , SARS-CoV-2 , Central Nervous System , Brain Stem
SELECTION OF CITATIONS
SEARCH DETAIL
...