Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Angew Chem Int Ed Engl ; : e202406182, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806444

ABSTRACT

Dual-ion batteries (DIBs) present great application potential in low-temperature energy storage scenarios due to their unique dual-ion working mechanism. However, at low temperatures, the insufficient electrochemical oxidation stability of electrolytes and depressed interfacial compatibility impair the DIB performance. Here, we design a variant-localized high-concentration solvation structure for universal low-temperature electrolytes (ν-LHCE) without the phase separation via introducing an extremely weak-solvating solvent with low energy levels. The unique solvation structure gives the ν-LHCE enhanced electrochemical oxidation stability. Meanwhile, the extremely weak-solvating solvent can competitively participate in the Li+-solvated coordination, which improves the Li+ transfer kinetics and boosts the formation of robust interphases.Thus, the ν-LHCE electrolyte not only has a good high-voltage stability of >5.5 V and proper Li+ transference number of 0.51 but also shows high ionic conductivities of 1 mS/cm at low temperatures. Consequently, the ν-LHCE electrolyte enables different types of batteries to achieve excellent long-term cycling stability and good rate capability at both room and low temperatures. Especially, the capacity retentions of the DIB are 77.7% and 51.6 %, at -40 oC and -60 oC, respectively, indicating great potential for low- and temperature energy storage applications, such as polar exploration,emergency communication equipment, and energy storage station in cold regions.

2.
Biotechnol Adv ; 73: 108372, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38714276

ABSTRACT

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.

3.
Bioresour Technol ; 402: 130774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701983

ABSTRACT

Formate as an ideal mediator between the physicochemical and biological realms can be obtained from electrochemical reduction of CO2 and used to produce bio-chemicals. Yet, limitations arise when employing natural formate-utilizing microorganisms due to restricted product range and low biomass yield. This study presents a breakthrough: engineered Corynebacterium glutamicum strains (L2-L4) through modular engineering. L2 incorporates the formate-tetrahydrofolate cycle and reverse glycine cleavage pathway, L3 enhances NAD(P)H regeneration, and L4 reinforces metabolic flux. Metabolic modeling elucidates C1 assimilation, guiding strain optimization for co-fermentation of formate and glucose. Strain L4 achieves an OD600 of 0.5 and produces 0.6 g/L succinic acid. 13C-labeled formate confirms C1 assimilation, and further laboratory evolution yields 1.3 g/L succinic acid. This study showcases a successful model for biologically assimilating formate in C. glutamicum that could be applied in C1-based biotechnological production, ultimately forming a formate-based bioeconomy.


Subject(s)
Biomass , Corynebacterium glutamicum , Formates , Metabolic Engineering , Succinic Acid , Corynebacterium glutamicum/metabolism , Formates/metabolism , Metabolic Engineering/methods , Succinic Acid/metabolism , Fermentation , Models, Biological , Glucose/metabolism
4.
Front Microbiol ; 15: 1345478, 2024.
Article in English | MEDLINE | ID: mdl-38559346

ABSTRACT

Antimicrobial resistance is one of the largest medical challenges because of the rising frequency of opportunistic human microbial infections across the globe. This study aimed to extract chitosan from the exoskeletons of dead bees and load it with bee venom (commercially available as Apitoxin [Api]). Then, the ionotropic gelation method would be used to form nanoparticles that could be a novel drug-delivery system that might eradicate eight common human pathogens (i.e., two fungal and six bacteria strains). It might also be used to treat the human colon cancer cell line (Caco2 ATCC ATP-37) and human liver cancer cell line (HepG2ATCC HB-8065) cancer cell lines. The x-ray diffraction (XRD), Fourier transform infrared (FTIR), and dynamic light scattering (DLS) properties, ζ-potentials, and surface appearances of the nanoparticles were evaluated by transmission electron microscopy (TEM). FTIR and XRD validated that the Api was successfully encapsulated in the chitosan nanoparticles (ChB NPs). According to the TEM, the ChB NPs and the ChB NPs loaded with Apitoxin (Api@ChB NPs) had a spherical shape and uniform size distribution, with non-aggregation, for an average size of approximately 182 and 274 ± 3.8 nm, respectively, and their Zeta potential values were 37.8 ± 1.2 mV and - 10.9 mV, respectively. The Api@ChB NPs had the greatest inhibitory effect against all tested strains compared with the ChB NPs and Api alone. The minimum inhibitory concentrations (MICs) of the Api, ChB NPs, and Api@ChB NPs were evaluated against the offer mentioned colony forming units (CFU/mL), and their lowest MIC values were 30, 25, and 12.5 µg mL-1, respectively, against Enterococcus faecalis. Identifiable morphological features of apoptosis were observed by 3 T3 Phototox software after Api@ChB NPs had been used to treat the normal Vero ATCC CCL-81, Caco2 ATCC ATP-37, and HepG2 ATCC HB-8065 cancer cell lines for 24 h. The morphological changes were clear in a concentration-dependent manner, and the ability of the cells was 250 to 500 µg mL-1. These results revealed that Api@ChB NPs may be a promising natural nanotreatment for common human pathogens.

5.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592508

ABSTRACT

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Subject(s)
Kluyveromyces , Succinic Acid , Kluyveromyces/genetics , Gene Expression Profiling , Transcriptome
6.
J Hazard Mater ; 471: 134256, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640673

ABSTRACT

A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.

7.
Adv Healthc Mater ; : e2304117, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567543

ABSTRACT

Burns can cause severe damage to the skin due to bacterial infection and severe inflammation. Although conductive hydrogels as electroactive burn-wound dressings achieve remarkable effects on accelerating wound healing, issues such as imbalance between their high conductivity and mechanical properties, easy dehydration, and low transparency must be addressed. Herein, a double-network conductive eutectogel is fabricated by integrating polymerizable deep eutectic solvents (PDESs)including acrylamide/choline chloride/glycerol (acrylamide-polymerization crosslink) and thiolated hyaluronic acid (disulfide-bonding crosslink). The introduction of PDESs provides the eutectogel with a conductivity (up to 0.25 S·m-1) and mechanical strength (tensile strain of 59-77%) simulating those of natural human skin, as well as satisfactory tissue adhesiveness, self-healing ability, and antibacterial properties. When combined with exogenous electrical stimulation, the conductive eutectogel exhibits the ability to reduce inflammation, stimulate cell proliferation and migration, promote collagen deposition and angiogenesis, and facilitate skin tissue remodeling. This conductive eutectogel shows great potential as a dressing for healing major burn wounds.

8.
Resuscitation ; 198: 110173, 2024 May.
Article in English | MEDLINE | ID: mdl-38467301

ABSTRACT

BACKGROUND: The current standards for shock advisory algorithms in AEDs require performance testing on artifact-free ECGs. However, AED analysis in the real world is more challenging due to potential artifacts from various sources (e.g., patient handling, and electromagnetic interference). This retrospective data analysis reports the real-world performance and behavior of a shock advisory algorithm used in three AED models with the presence of artifacts. METHODS: ECG rhythm analyses recorded during the use of three AED models (HS1, FRx and FR3) were reviewed. The shock recommendations made in the AEDs were compared to the expert annotations of reviewers. The effects of real-world artifacts and the handling by the algorithm were analyzed. RESULTS: Among the 3,941 analyses, 619 were annotated as shockable rhythms, and 2,912 were non-shockable. The overall sensitivity and specificity were 97.1% (601/619), and 99.9% (2,908/2,912), respectively. Artifacts were detected by the algorithm in 23.3% (918/3,941) of the analysis periods. The algorithm performance for the analysis periods with artifacts detected was 95.2% (80/84) for sensitivity and 100.0% (687/687) for specificity. In the remaining analysis periods with no artifacts detected, the sensitivity was 97.4% (521/535), and specificity was 99.8% (2,221/2,225). CONCLUSIONS: The performance of this shock advisory algorithm during real-world resuscitations with or without artifacts, exceeded AHA recommendations and the requirements in international standards. The high sensitivity and specificity demonstrate the effectiveness and safety of this algorithm in all three AED models.


Subject(s)
Algorithms , Artifacts , Defibrillators , Electrocardiography , Humans , Retrospective Studies , Electrocardiography/methods , Sensitivity and Specificity
9.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38539794

ABSTRACT

The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.

10.
Front Immunol ; 15: 1266850, 2024.
Article in English | MEDLINE | ID: mdl-38426102

ABSTRACT

The advent of immune-checkpoint inhibitors (ICIs) has revolutionized the treatment of malignant solid tumors in the last decade, producing lasting benefits in a subset of patients. However, unattended excessive immune responses may lead to immune-related adverse events (irAEs). IrAEs can manifest in different organs within the body, with pulmonary toxicity commonly referred to as immune checkpoint inhibitor-related pneumonitis (CIP). The CIP incidence remains high and is anticipated to rise further as the therapeutic indications for ICIs expand to encompass a wider range of malignancies. The diagnosis and treatment of CIP is difficult due to the large individual differences in its pathogenesis and severity, and severe CIP often leads to a poor prognosis for patients. This review summarizes the current state of clinical research on the incidence, risk factors, predictive biomarkers, diagnosis, and treatment for CIP, and we address future directions for the prevention and accurate prediction of CIP.


Subject(s)
Immune Checkpoint Inhibitors , Pneumonia , Humans , Immune Checkpoint Inhibitors/adverse effects , Pneumonia/chemically induced , Pneumonia/diagnosis , Risk Factors
11.
J Proteome Res ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396335

ABSTRACT

Acetic acid is a prevalent inhibitor in lignocellulosic hydrolysate, which represses microbial growth and bioproduction. Histone modification and chromatin remodeling have been revealed to be critical for regulating eukaryotic metabolism. However, related studies in chronic acetic acid stress responses remain unclear. Our previous studies revealed that overexpression of the histone H4 methyltransferase Set5p enhanced acetic acid stress tolerance of the budding yeast Saccharomyces cerevisiae. In this study, we examined the role of Set5p in acetic acid stress by analyzing global protein expression. Significant activation of intracellular protein expression under the stress was discovered, and the functions of the differential proteins were mainly involved in chromatin modification, signal transduction, and carbohydrate metabolism. Notably, a substantial increase of Set5p expression was observed in response to acetic acid stress. Functional studies demonstrated that the restriction of the telomere capping protein Rtc3p, as well as Ies3p and Taf14p, which are related to chromatin regulation, was critical for yeast stress response. This study enriches the understanding of the epigenetic regulatory mechanisms underlying yeast stress response mediated by histone-modifying enzymes. The results also benefit the development of robust yeast strains for lignocellulosic bioconversion.

12.
Front Immunol ; 15: 1343450, 2024.
Article in English | MEDLINE | ID: mdl-38361936

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. In recent years, treatment with immune checkpoint inhibitors (ICIs) has gradually improved the survival rate of patients with NSCLC, especially those in the advanced stages. ICIs can block the tolerance pathways that are overexpressed by tumor cells and maintain the protective activity of immune system components against cancer cells. Emerging clinical evidence suggests that gut microbiota may modulate responses to ICIs treatment, possibly holding a key role in tumor immune surveillance and the efficacy of ICIs. Studies have also shown that diet can influence the abundance of gut microbiota in humans, therefore, dietary interventions and the adjustment of the gut microbiota is a novel and promising treatment strategy for adjunctive cancer therapy. This review comprehensively summarizes the effects of gut microbiota, antibiotics (ATBs), and dietary intervention on the efficacy of immunotherapy in NSCLC, with the aim of informing the development of novel strategies in NSCLC immunotherapy.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen , Immunotherapy
13.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38270502

ABSTRACT

We present a remote focusing optical tweezer utilizing a 4f symmetrical optical system to compensate the high-order aberration during annular light refocusing. The position of the optical trap can be adjusted beyond the range of one hundred micrometers in the axial direction by means of tuning the position of the mirror placed in the focal region of the illumination objective lens. This optical tweezer can be combined with a sectioning microscope to realize three-dimensional (3D) imaging, e.g., a confocal microscope using a single water immersion objective lens. All optical elements are placed in one side of the sample, which is very useful for application in fields such as radiation biology, where radiation or magnetism disturbance must be introduced on the other side of the sample. In the experiment, a 10 µm diameter silicon dioxide microsphere and pollen cells immersed in the water are translated along the axis using the optical tweezer and, meanwhile, the sectioning images are obtained using the confocal microscope.

14.
J Colloid Interface Sci ; 659: 650-664, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38198942

ABSTRACT

The simple preparation of mesoporous NiS2//MoS2 composite catalyst through a one-pot solvothermal method is presented. The improvement of the specific surface area (220 m2/g) and the construction of the porous structure are realized by this method in the case of no support. The organics acts as a microscopic binder contribute to uniform stacking of MoS2 with NiS2 clusters. The composite structure including NiS2 and MoS2 was obtained (proved by XRD, XPS, TEM, IR, UV-vis and RAMAN) and changed the microelectronic environment of the active metal surface (DFT calculation). The mesoporous NiS2//MoS2 catalyst (Ni1Mo1-200) showed an excellent hydrodesulfurization performance of dibenzothiophene (DBT conversion: 78 % at 260 °C) and a high ratio of direct desulfurization pathway (SDDS/HYD = 16.6) at a low reaction temperature. By combining the characterization and theoretical calculation results, the advantages of this NiS2//MoS2 composite structure in synergistic catalysis was further confirmed.

15.
Carbohydr Polym ; 328: 121706, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220341

ABSTRACT

The quality of polysaccharide-based films and hard capsules is often affected by changes in relative humidity, manifesting as unstable water content, and changes in mechanical strength that make them brittle or soft. Herein, carboxyl-modified nanocellulose (cNC) was prepared and used as a new component to successfully improve the moisture resistance of cNC/pullulan/high-acyl gellan bio-nanocomposite hard capsules (NCPGs). Homogenously dispersed cNC in the pullulan/high-acyl gellan matrix could render the formation of more hydrogen bonds that provided additional water-binding sites and limited the free movement of pullulan and high-acyl gellan molecular chains within NCPGs. This contributed to a decreased amount of pooling adsorption water and an increased amount of Langmuir adsorption water in NCPGs, as compared to pullulan/high-acyl gellan hard capsules (PGs) without cNC. Therefore, the equilibrium moisture content (EMC) values of NCPGs decreased at 83 % relative humidity and increased at 23 % relative humidity compared to those of PGs. Together with enhanced mechanical and barrier properties, NCPGs effectively protected encapsulated amoxicillin and probiotic powder from changes in the outside humidity. Additionally, NCPGs exhibited faster drug release. This study presents a new mechanism and strategy for fabricating films and hard capsules with enhanced stability against moisture variation.


Subject(s)
Glucans , Nanocomposites , Glucans/chemistry , Water/chemistry , Amoxicillin , Nanocomposites/chemistry
16.
Small ; 20(3): e2302532, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37697021

ABSTRACT

Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Drug Therapy, Combination , Nanotechnology , Polymers/pharmacology
17.
Cancer Gene Ther ; 31(2): 217-227, 2024 02.
Article in English | MEDLINE | ID: mdl-37990061

ABSTRACT

TNFRSF19 is a member of the tumor necrosis factor receptor superfamily, and its function exhibits variability among different types of cancers. The influence of TNFRSF19 on triple-negative breast cancer (TNBC) has yet to be definitively established. In this study, bioinformatics analyses revealed that lower TNFRSF19 was associated with the poorer prognosis, higher lymph node metastasis and lower immune infiltration. Subsequently, data obtained from the TCGA database and collection of tissue samples revealed that the mRNA and protein expression levels of TNFRSF19 were observed to be significantly reduced in TNBC tissue compared to normal tissue. Additionally, the results of in vitro experiments have demonstrated that TNFRSF19 possessed the ability to inhibit the proliferation, migration and invasive capabilities of TNBC cells. In vivo trials elucidated that TNFRSF19 could suppress tumor xenografts growth. Mechanistically, TNFRSF19 initiated caspase-independent cell death and induced paraptosis. Moreover, rescue assays demonstrated that TNFRSF19 induced-paraptosis was facilitated by MAPK pathway-mediated endoplasmic reticulum (ER) stress. In conclusion, our findings demonstrated that the upregulation of TNFRSF19 functioned as a tumor suppressor in TNBC by stimulating paraptosis through the activation of the MAPK pathway-mediated ER stress, highlighting its potential to be a new therapeutic target for TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Paraptosis , Cell Line, Tumor , Endoplasmic Reticulum Stress , Receptors, Tumor Necrosis Factor/metabolism , Cell Proliferation/genetics
18.
Trends Biotechnol ; 42(4): 418-430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37858385

ABSTRACT

Lignocellulose is an alternative to fossil resources, but its biochemical conversion is not economically competitive. While decentralized processing can reduce logistical cost for this feedstock, sugar platforms need to be developed with energy-saving pretreatment technologies and cost-effective cellulases, and products must be selected correctly. Anaerobic fermentation with less energy consumption and lower contamination risk is preferred, particularly for producing biofuels. Great effort has been devoted to producing cellulosic ethanol, but CO2 released with large quantities during ethanol fermentation must be utilized in situ for credit. Unless titer and yield are improved substantially, butanol cannot be produced as an advanced biofuel. Microbial lipids produced through aerobic fermentation with low yield and intensive energy consumption are not affordable as feedstocks for biodiesel production.


Subject(s)
Ethanol , Lignin , Lignin/metabolism , Ethanol/metabolism , Fermentation , Butanols , Biofuels
19.
Int J Biol Macromol ; 258(Pt 2): 129041, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154715

ABSTRACT

Chromatin remodelers are important in maintaining the dynamic chromatin state in eukaryotic cells, which is essential for epigenetic regulation. Among the remodelers, the multi-subunits complex INO80 plays crucial roles in transcriptional regulation. However, current knowledge of chromatin regulation of the core subunit Ino80 on stress adaptation remains mysterious. Here we revealed that overexpressing the chromatin remodeler Ino80 elevated tolerance to multiple stresses in budding yeast Saccharomyces cerevisiae. Analyses of differential chromatin accessibility and global transcription levels revealed an enrichment of genes involved in NCR (nitrogen catabolite repression) under acetic acid stress. We demonstrated that Ino80 overexpression reduced the histone H3 occupancy in the promoter region of the glutamate dehydrogenase gene GDH2 and the allantoinase gene DAL1. Consistently, the decreased occupancy of nucleosome was revealed in the Ino80-inactivation mutant. Further analyses showed that Ino80 was recruited to the specific DNA locus in the promoter region of GDH2. Consistently, Ino80 overexpression facilitated the utilization of non-preferred nitrogen source to enhance ethanol yield under prolonged acetic acid stress. These results demonstrate that Ino80 plays a crucial role in coordinating carbon and nitrogen metabolism during stress adaptation.


Subject(s)
Catabolite Repression , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Chromatin/metabolism , Saccharomyces cerevisiae Proteins/genetics , Epigenesis, Genetic , Nucleosomes , Acetates/metabolism
20.
Colloids Surf B Biointerfaces ; 234: 113702, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113752

ABSTRACT

Promising findings have been emerged from studies utilizing n3 polyunsaturated fatty acids (PUFA) supplementation in animal models of inflammatory bowel disease (IBD). Introduction of marine phospholipids which combine n3 PUFA with phosphatidylcholine in a nanoliposome formulation offers enhanced pharmacological efficacy due to physical stability, improved bioavailability, and specific targeting to inflamed colitis tissues. In the present study, a marine phospholipid-based nanoliposome formulation was developed and optimized, resulting in nanovesicles of approximately 107.7 ± 1.3 nm in size, 0.18 ± 0.01 PDI, and - 32.03 ± 3.16 mV ZP. The nanoliposomes exhibited spherical vesicles with stable properties upon incubation at SGF as shown by the TEM, DLS, and turbidity measurements over 3 h. MPL nanoliposomes were cytocompatible until the concentration of 500 µg/mL as per MTT assay and taken by macrophages through macropinocytosis and caveolae pathways, and demonstrated significant inhibitory activity against reactive oxygen species (ROS) in LPS-stimulated macrophages. They were also shown to be blood-compatible and safe for administration in healthy mice. In a colitis mouse model, the nanoliposomes displayed preferential distribution in the inflamed gut, delaying the onset of colitis when administered prophylactically. These findings highlight the potential of marine phospholipid nanoliposomes as a promising therapeutic approach for managing inflammatory bowel disease.


Subject(s)
Colitis , Fatty Acids, Omega-3 , Inflammatory Bowel Diseases , Animals , Mice , Phospholipids , Inflammatory Bowel Diseases/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Phosphatidylcholines , Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL
...