Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 332: 199127, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37149225

ABSTRACT

Pseudostellaria heterophylla (P. heterophylla) is a popular Chinese medicinal herb that is cultivated widely in China. Viral infection is commonly encountered during the production of P. heterophylla. To identify viruses causing P. heterophylla disease, sRNA and mRNA libraries were built for 2 sets of P. heterophylla plants, one set that was planted only once (FGP) and one that was planted three consecutive three times (TGP) in a field, using virus-free tuberous roots as reproductive materials. A comprehensive procedure, including assembling virus-derived sRNA (vsRNA), assessing and cloning the full-length viral genome, building an infectious cloning vector and constructing a virus-based expression vector, was performed to identify viruses infecting P. heterophylla. Ultimately, 48 contig-related viruses were mined from 6 sRNA and 6 mRNA P. heterophylla libraries. A 9762-bp fragment was predicted to be the complete genome of TuMV virus. This sequence was cloned from P. heterophylla, and its infectivity was evaluated using the virus-infection model plant Nicotiana benthamiana (N. benthamiana) and host plant P. heterophylla. The resulting 9839-bp viral genome was successfully obtained from P. heterophylla and identified as a new P. heterophylla TuMV-ZR isolate. Simultaneously, TuMV-ZR infectious clones were shown to effectively infect P. heterophylla. Furthermore, TuMV-ZR expression vectors were developed, and the ability of a TuMV-ZR-based vector to express foreign genes was determined by analysis with the reporter gene EGFP. TuMV-ZR-based vectors were found to continuously express foreign genes in different organs of P. heterophylla throughout the whole vegetative period. In addition, TuMV-ZR vectors carrying EGFP accumulated in the tuberous roots of P. heterophylla, confirming that tuberous roots are key targets for viral infection and transmission. This study revealed the core pathogenicity of P. heterophylla mosaic virus and developed a new TuMV-ZR-based expression tool that led to long-term protein expression in P. heterophylla, laying the foundation for the identification of the mechanisms of P. heterophylla infection with mosaic viruses and developing tools to express value proteins in the tuberous roots of the medicinal plant P. heterophylla.


Subject(s)
Plant Leaves , RNA, Small Untranslated , Plant Roots , Genetic Vectors , RNA, Messenger/metabolism
2.
Medchemcomm ; 9(10): 1663-1672, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30429971

ABSTRACT

Three copper(ii) complexes, [Cu(L1)(NO3)2] (C1), [Cu(L2)Cl2] (C2) and [Cu(L2)SO4]2·H2O (C3), were designed and synthesized by the reaction of Cu(NO3)2·3H2O, CuCl2·2H2O and CuSO4·5H2O with a quinoline-derived Schiff base ligand, L1 or L2, prepared by the condensation of quinoline-8-carbaldehyde with 4-aminobenzoic acid methyl ester or 4-aminobenzoic acid ethyl ester (benzocaine). The efficient bindings of the C1-C3 complexes with human serum albumin (HSA) and calf thymus DNA (CT-DNA) were analyzed by spectroscopy and molecular docking. These complexes could significantly quench the fluorescence of HSA through the static quenching process, and hydrophobic interactions with HSA through the sub-domain IIA and IIIA cavities. The complexes bind to DNA via the intercalative mode and they fit well into the curved contour of the DNA target in the minor groove region. Furthermore, the interaction abilities of the Cu(ii) complexes with HSA/DNA were greater as compared to their corresponding ligands. Interestingly, C1-C3, particularly C3, exhibited more cytotoxicity toward HeLa cells compared to normal HL-7702 cells and three other tumor cell lines (Hep-G2, NCI-H460, and MGC80-3). Their cytotoxicity toward the HeLa cell lines was 1.9-3.5-fold more potent than cisplatin. Further studies indicated that these complexes arrested the cell cycle in the G0/G1 phase and promoted tumor cell apoptosis via a reactive oxygen species (ROS)-mediated mitochondrial pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...