Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 47(11): 965-975, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33029730

ABSTRACT

Amyris is a fermentation product company that leverages synthetic biology and has been bringing novel fermentation products to the market since 2009. Driven by breakthroughs in genome editing, strain construction and testing, analytics, automation, data science, and process development, Amyris has commercialized nine separate fermentation products over the last decade. This has been accomplished by partnering with the teams at 17 different manufacturing sites around the world. This paper begins with the technology that drives Amyris, describes some key lessons learned from early scale-up experiences, and summarizes the technology transfer procedures and systems that have been built to enable moving more products to market faster. Finally, the breadth of the Amyris product portfolio continues to expand; thus the steps being taken to overcome current challenges (e.g. automated strain engineering can now outpace the rest of the product commercialization timeline) are described.


Subject(s)
Fermentation , Synthetic Biology , Automation
2.
Nature ; 537(7622): 694-697, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27654918

ABSTRACT

A bio-based economy has the potential to provide sustainable substitutes for petroleum-based products and new chemical building blocks for advanced materials. We previously engineered Saccharomyces cerevisiae for industrial production of the isoprenoid artemisinic acid for use in antimalarial treatments. Adapting these strains for biosynthesis of other isoprenoids such as ß-farnesene (C15H24), a plant sesquiterpene with versatile industrial applications, is straightforward. However, S. cerevisiae uses a chemically inefficient pathway for isoprenoid biosynthesis, resulting in yield and productivity limitations incompatible with commodity-scale production. Here we use four non-native metabolic reactions to rewire central carbon metabolism in S. cerevisiae, enabling biosynthesis of cytosolic acetyl coenzyme A (acetyl-CoA, the two-carbon isoprenoid precursor) with a reduced ATP requirement, reduced loss of carbon to CO2-emitting reactions, and improved pathway redox balance. We show that strains with rewired central metabolism can devote an identical quantity of sugar to farnesene production as control strains, yet produce 25% more farnesene with that sugar while requiring 75% less oxygen. These changes lower feedstock costs and dramatically increase productivity in industrial fermentations which are by necessity oxygen-constrained. Despite altering key regulatory nodes, engineered strains grow robustly under taxing industrial conditions, maintaining stable yield for two weeks in broth that reaches >15% farnesene by volume. This illustrates that rewiring yeast central metabolism is a viable strategy for cost-effective, large-scale production of acetyl-CoA-derived molecules.


Subject(s)
Bioreactors , Carbon/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Terpenes/metabolism , Acetyl Coenzyme A/biosynthesis , Acetyl Coenzyme A/metabolism , Adenosine Triphosphate/metabolism , Biosynthetic Pathways , Carbohydrate Metabolism , Carbon Dioxide/metabolism , Cytosol/metabolism , Fermentation , Oxidation-Reduction , Oxygen/metabolism , Saccharomyces cerevisiae/enzymology , Sesquiterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...