Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Front Pharmacol ; 15: 1406188, 2024.
Article in English | MEDLINE | ID: mdl-39005933

ABSTRACT

Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-ß, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.

2.
Acta Pharmacol Sin ; 45(4): 777-789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200148

ABSTRACT

Renal fibrosis is the final pathological change in renal disease, and aging is closely related to renal fibrosis. Mitochondrial dysfunction has been reported to play an important role in aging, but the exact mechanism remains unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is mainly located in mitochondria and plays an important role in regulating mitochondrial function and endoplasmic reticulum (ER) stress. However, the role of DsbA-L in renal aging has not been reported. In this study, we showed a reduction in DsbA-L expression, the disruption of mitochondrial function and an increase in fibrosis in the kidneys of 12- and 24-month-old mice compared to young mice. Furthermore, the deterioration of mitochondrial dysfunction and fibrosis were observed in DsbA-L-/- mice with D-gal-induced accelerated aging. Transcriptome analysis revealed a decrease in Flt4 expression and inhibition of the PI3K-AKT signaling pathway in DsbA-L-/- mice compared to control mice. Accelerated renal aging could be alleviated by an AKT agonist (SC79) or a mitochondrial protector (MitoQ) in mice with D-gal-induced aging. In vitro, overexpression of DsbA-L in HK-2 cells restored the expression of Flt4, AKT pathway factors, SP1 and PGC-1α and alleviated mitochondrial damage and cell senescence. These beneficial effects were partially blocked by inhibiting Flt4. Finally, activating the AKT pathway or improving mitochondrial function with chemical reagents could alleviate cell senescence. Our results indicate that the DsbA-L/AKT/PGC-1α signaling pathway could be a therapeutic target for age-related renal fibrosis and is associated with mitochondrial dysfunction.


Subject(s)
Glutathione Transferase , Kidney Diseases , Kidney , Mitochondria , Animals , Mice , Aging , Fibrosis , Homeostasis , Kidney/pathology , Kidney Diseases/enzymology , Mitochondria/enzymology , Mitochondrial Diseases/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glutathione Transferase/metabolism
3.
Redox Biol ; 66: 102855, 2023 10.
Article in English | MEDLINE | ID: mdl-37597421

ABSTRACT

Peroxisomes are metabolically active organelles that are known for exerting oxidative metabolism, but the precise mechanism remains unclear in diabetic nephropathy (DN). Here, we used proteomics to uncover a correlation between the antioxidant protein disulfide-bond A oxidoreductase-like protein (DsbA-L) and peroxisomal function. In vivo, renal tubular injury, oxidative stress, and cell apoptosis in high-fat diet plus streptozotocin (STZ)-induced diabetic mice were significantly increased, and these changes were accompanied by a "ghost" peroxisomal phenotype, which was further aggravated in DsbA-L-deficient diabetic mice. In vitro, the overexpression of DsbA-L in peroxisomes could improve peroxisomal phenotype and function, reduce oxidative stress and cell apoptosis induced by high glucose (HG, 30 mM) and palmitic acid (PA, 250 µM), but this effect was reversed by 3-Amino-1,2,4-triazole (3-AT, a catalase inhibitor). Mechanistically, DsbA-L regulated the activity of catalase by binding to it, thereby reducing peroxisomal leakage and proteasomal degradation of peroxisomal matrix proteins induced by HG and PA. Additionally, the expression of DsbA-L in renal tubules of patients with DN significantly decreased and was positively correlated with peroxisomal function. Taken together, these results highlight an important role of DsbA-L in ameliorating tubular injury in DN by improving peroxisomal function.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Mice , Catalase , Peroxisomes , Oxidative Stress
4.
Front Endocrinol (Lausanne) ; 14: 1220426, 2023.
Article in English | MEDLINE | ID: mdl-37576954

ABSTRACT

Metabolic syndrome is a complex metabolic disorder that often clinically manifests as obesity, insulin resistance/diabetes, hyperlipidemia, and hypertension. With the development of social and economic systems, the incidence of metabolic syndrome is increasing, bringing a heavy medical burden. However, there is still a lack of effective prevention and treatment strategies. Fibroblast growth factor 21 (FGF21) is a member of the human FGF superfamily and is a key protein involved in the maintenance of metabolic homeostasis, including reducing fat mass and lowering hyperglycemia, insulin resistance and dyslipidemia. Here, we review the current regulatory mechanisms of FGF21, summarize its role in obesity, diabetes, hyperlipidemia, and hypertension, and discuss the possibility of FGF21 as a potential target for the treatment of metabolic syndrome.


Subject(s)
Diabetes Mellitus , Hyperlipidemias , Hypertension , Insulin Resistance , Metabolic Syndrome , Humans , Metabolic Syndrome/complications , Fibroblast Growth Factors/metabolism , Obesity/metabolism
5.
Front Pharmacol ; 14: 1191517, 2023.
Article in English | MEDLINE | ID: mdl-37397494

ABSTRACT

Mitochondria, which are the energy factories of the cell, participate in many life activities, and the kidney is a high metabolic organ that contains abundant mitochondria. Renal aging is a degenerative process associated with the accumulation of harmful processes. Increasing attention has been given to the role of abnormal mitochondrial homeostasis in renal aging. However, the role of mitochondrial homeostasis in renal aging has not been reviewed in detail. Here, we summarize the current biochemical markers associated with aging and review the changes in renal structure and function during aging. Moreover, we also review in detail the role of mitochondrial homeostasis abnormalities, including mitochondrial function, mitophagy and mitochondria-mediated oxidative stress and inflammation, in renal aging. Finally, we describe some of the current antiaging compounds that target mitochondria and note that maintaining mitochondrial homeostasis is a potential strategy against renal aging.

6.
Chin Med J (Engl) ; 136(21): 2521-2537, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37442770

ABSTRACT

ABSTRACT: Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.


Subject(s)
Ferroptosis , Humans , Apoptosis , Phospholipids/metabolism , Nitric Oxide Synthase
7.
Front Endocrinol (Lausanne) ; 14: 1182848, 2023.
Article in English | MEDLINE | ID: mdl-37383398

ABSTRACT

The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/drug therapy , Endoplasmic Reticulum , Homeostasis , Endoplasmic Reticulum Stress , Epithelial Cells
8.
Front Endocrinol (Lausanne) ; 14: 1181913, 2023.
Article in English | MEDLINE | ID: mdl-37288303

ABSTRACT

Metabolic syndrome is a complex metabolic disorder, its main clinical manifestations are obesity, hyperglycemia, hypertension and hyperlipidemia. Although metabolic syndrome has been the focus of research in recent decades, it has been proposed that the occurrence and development of metabolic syndrome is related to pathophysiological processes such as insulin resistance, adipose tissue dysfunction and chronic inflammation, but there is still a lack of favorable clinical prevention and treatment measures for metabolic syndrome. Multiple studies have shown that myostatin (MSTN), a member of the TGF-ß family, is involved in the development and development of obesity, hyperlipidemia, diabetes, and hypertension (clinical manifestations of metabolic syndrome), and thus may be a potential therapeutic target for metabolic syndrome. In this review, we describe the transcriptional regulation and receptor binding pathway of MSTN, then introduce the role of MSTN in regulating mitochondrial function and autophagy, review the research progress of MSTN in metabolic syndrome. Finally summarize some MSTN inhibitors under clinical trial and proposed the use of MSTN inhibitor as a potential target for the treatment of metabolic syndrome.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Humans , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Myostatin/metabolism , Muscle, Skeletal/metabolism , Insulin Resistance/physiology , Obesity/complications , Obesity/metabolism
9.
Clin Sci (Lond) ; 137(12): 931-945, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37226722

ABSTRACT

Mitochondria-associated endoplasmic reticulum membranes (MAMs) regulate ATG14- and Beclin1-mediated mitophagy and play key roles in the development of diabetic nephropathy (DN). DsbA-L is mainly located in MAMs and plays a role in renoprotection, but whether it activates mitophagy by maintaining MAM integrity remains unclear. In the present study, we found that renal tubular damage was further aggravated in diabetic DsbA-L-/- mice compared with diabetic mice and that this damage was accompanied by disrupted MAM integrity and decreased mitophagy. Furthermore, notably decreased expression of ATG14 and Beclin1 in MAMs extracted from the kidneys of diabetic DsbA-L-/- mice was observed. In vitro, overexpression of DsbA-L reversed the disruption of MAM integrity and enhanced mitophagy in HK-2 cells, a human proximal tubular cell line, after exposure to high-glucose (HG) conditions. Additionally, compared with control mice, DsbA-L-/- mice were exhibited down-regulated expression of helicase with zinc finger 2 (HELZ2) in their kidneys according to transcriptome analysis; HELZ2 serves as a cotranscription factor that synergistically functions with PPARα to promote the expression of mitofusin 2 (MFN-2). Treatment of HK-2 cells with MFN-2 siRNA resulted in MAM uncoupling and decreased mitophagy. Moreover, HG notably reduced the expression of HELZ2 and MFN-2 and inhibited mitophagy, and these effects were partially blocked by overexpression of DsbA-L and altered upon cotreatment with HELZ2 siRNA, HELZ2 overexpression or MK886 (PPARα inhibitor) treatment. These data indicate that DsbA-L alleviates diabetic tubular damage by activating mitophagy through maintenance of MAM integrity via the HELZ2/MFN-2 pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice , Humans , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetes Mellitus, Experimental/metabolism , Mitochondria/metabolism , Beclin-1/metabolism , Beclin-1/pharmacology , Mitophagy/genetics , PPAR alpha/metabolism , RNA, Small Interfering/metabolism
10.
Dement Geriatr Cogn Disord ; 52(2): 47-73, 2023.
Article in English | MEDLINE | ID: mdl-37068473

ABSTRACT

INTRODUCTION: Stem cell-based regenerative medicine has provided an excellent opportunity to investigate therapeutic strategies and innovative treatments for Alzheimer's disease (AD). However, there is an absence of visual overviews to assess the published literature systematically. METHODS: In this review, the bibliometric approach was used to estimate the searched data on stem cell research in AD from 2004 to 2022, and we also utilized CiteSpace and VOSviewer software to evaluate the contributions and co-occurrence relationships of different countries/regions, institutes, journals, and authors as well as to discover research hot spots and encouraging future trends in this field. RESULTS: From 2004 to 2022, a total of 3,428 publications were retrieved. The number of publications and citations on stem cell research in AD has increased dramatically in the last nearly 20 years, especially since 2016. North America and Asia were the top 2 highest output regions. The leading country in terms of publications and access to collaborative networks was the USA. Centrality analysis revealed that the UCL (0.05) was at the core of the network. The Journal of Alzheimer's Disease (n = 102, 2.98%) was the most productive academic journal. The analyses of keyword burst detection indicated that exosomes, risk factors, and drug delivery only had burst recently. Citations and co-citation achievements clarified that cluster #0 induced pluripotent stem cells, #2 mesenchymal stem cells, #3 microglia, and #6 adult hippocampal neurogenesis persisted to recent time. CONCLUSION: This bibliometric analysis provides a comprehensive guide for clinicians and scholars working in this field. These analysis and results hope to provide useful information and references for future understanding of the challenges behind translating underlying stem cell biology into novel clinical therapeutic potential in AD.


Subject(s)
Alzheimer Disease , Stem Cell Research , Humans , Alzheimer Disease/therapy , Bibliometrics , Hippocampus , Microglia
11.
Front Aging Neurosci ; 14: 1020321, 2022.
Article in English | MEDLINE | ID: mdl-36248005

ABSTRACT

Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD). The most common sites targeted for DBS in PD are the globus pallidus internal (GPi) and subthalamic nucleus (STN). However, STN-DBS and GPi-DBS have limited improvement in some symptoms and even aggravate disease symptoms. Therefore, discovering new targets is more helpful for treating refractory symptoms of PD. Therefore, our study selected a new brain region, the lateral globus pallidus (GP), as the target of DBS, and the study found that GP-DBS can improve motor symptoms. It has been reported that the thalamic parafascicular (PF) nucleus is strongly related to PD pathology. Moreover, the PF nucleus and GP have very close direct and indirect fiber connections. However, whether GP-DBS can change the activity of the PF remains unclear. Therefore, in this study, we monitored the activity changes in the PF nucleus in PD rats during a quiet awake state after GP-DBS. We found that GP-DBS could reverse the electrical activity of the PF nucleus in PD model rats, including the discharge pattern of the neurons and the local field potential (0.7-12 and 12-70 Hz). Based on the results mentioned above, PF activity in PD model rats could be changed by GP-DBS. Thus, the normalization of PF neuronal activity may be a potential mechanism for GP-DBS in the treatment of PD; these findings lay the foundation for PD treatment strategies.

13.
Int Immunopharmacol ; 111: 109101, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940076

ABSTRACT

Cisplatin, as a commonly used anticancer drug, can easily lead to acute kidney injury (AKI), and has received more and more attention in clinical practice. ß-hydroxybutyric acid (BHB) is a metabolite in the body and acts as an inhibitor of oxidative stress and NLRP3 inflammasome, reducing inflammatory responses and apoptosis. However, the role of BHB in cisplatin-induced AKI is currently not fully elucidated. In this study, C57BL/6 male mice were randomly divided into normal control group, cisplatin-induced AKI group and AKI with BHB treatment group. Compared to the control, cisplatin-treated mice exhibited high level of serum creatinine, blood urea nitrogen and severe tubular injury, which accompanied with significantly increased expression level of NLRP3, IL-1ß, IL-18, BAX, cleaved-caspase 3, as well as aggravated oxidative stress and renal tubular cell apoptosis. However, these changes were significantly improved in that of BHB treatment. In vitro, our study showed that the expression of cleaved-caspase3, IL-1ß and IL-18 were significantly increased in human proximal tubular epithelial cell line (HK-2) treated with cisplatin compared with the control group, while decreased in cells treated with BHB. Furthermore, a significantly increased expression of cGAS and STING in HK-2 cells treated with cisplatin were found, whereas notably decreased in cells treated with BHB. This data indicates that BHB protects against cisplatin-induced AKI and renal tubular damage mediated by NLRP3 inflammasome and cGAS-STING pathway.


Subject(s)
Acute Kidney Injury , Inflammasomes , 3-Hydroxybutyric Acid , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Animals , Cisplatin/adverse effects , Humans , Inflammasomes/metabolism , Interleukin-18/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotidyltransferases/metabolism , Oxidative Stress
14.
Front Physiol ; 13: 909569, 2022.
Article in English | MEDLINE | ID: mdl-35874522

ABSTRACT

Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).

15.
Cell Death Discov ; 8(1): 232, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35473933

ABSTRACT

Acute kidney injury (AKI) is characterized by necroinflammation formed by necrotic tubular epithelial cells (TECs) and interstitial inflammation. In necroinflammation, macrophages are key inflammatory cells and can be activated and polarized into proinflammatory macrophages. Membranous Toll-like receptors (TLRs) can cooperate with intracellular NOD-like receptor protein 3 (NLRP3) to recognize danger signals from necrotic TECs and activate proinflammatory macrophages by assembling NLRP3 inflammasome. However, the cooperation between TLRs and NLRP3 is still unclear. Using conditioned medium from necrotic TECs, we confirmed that necrotic TECs could release danger signals to activate NLRP3 inflammasome in macrophages. We further identified that necrotic TECs-induced NLRP3 inflammasome activation was dependent on ATP secretion via Pannexin-1 (Panx1) channel in macrophages. Next, we verified that TLR2 was required for the activation of Panx1 and NLRP3 in macrophages. Mechanistically, we indicated that caspase-5 mediated TLR2-induced Panx1 activation. In addition, we showed that necrotic TECs-induced activation of TLR2/caspase-5/Panx1 axis could be decreased in macrophages when TECs was protected by N-acetylcysteine (NAC). Overall, we demonstrate that danger signals from necrotic TECs could activate NLRP3 inflammasome in macrophages via TLR2/caspase-5/Panx1 axis during AKI.

16.
Article in English | MEDLINE | ID: mdl-34106852

ABSTRACT

This article investigates the dependence of transmitting sensitivity on the top electrode design of piezoelectric micromachined ultrasonic transducers (PMUTs). Two typical top electrodes, namely inner electrode (IE) and outer electrode (OE), are designed and fabricated. The measured transmitting velocities of the fabricated PMUTs at resonance under a drive voltage of 5 [Formula: see text] (peak-to-peak) are 15.36 mm/s for the IE design and 20.67 mm/s for the OE design with a circular diaphragm and 16.62 mm/s for the IE design and 22.18 mm/s for the OE design with a hexagonal diaphragm. The OE design demonstrates a transmitting velocity improvement of 34.57% for the circular diaphragm and 33.45% for the hexagonal diaphragm. The improvement is due to the fact that the OE design shows higher quality factor ( Q ) than the IE counterpart. Moreover, the resonant frequency of the OE design is higher than that of the IE design, which results in a larger acoustic pressure output and hence higher transmitting sensitivity. This work highlights an effective and simple approach for PMUTs to achieve high transmitting sensitivity, which is an important parameter in the applications that require large sound pressures, such as fingerprint imaging, gesture recognition, and ranging.


Subject(s)
Transducers , Ultrasonics , Electrodes , Equipment Design , Ultrasonography
17.
FASEB J ; 35(1): e21229, 2021 01.
Article in English | MEDLINE | ID: mdl-33368613

ABSTRACT

Acute kidney injury (AKI) is a common clinical problem, and patients who survive AKI have a high risk of chronic kidney disease (CKD). The mechanism of CKD post-AKI, characterized by progressive renal fibrosis, is still unclear. Maladaptive tubular epithelial cells (TECs) after AKI are considered a leading cause of renal fibrosis post-AKI. TECs under maladaptive repair manifest characteristics of senescence. Removing senescent TECs by genetic ablation has been proven effective in reducing renal fibrosis. Senolytics, which eliminate senescent cells by pharmacological intervention, have been studied in a series of degenerative diseases. To our knowledge, the effects of senolytics on renal fibrosis post-AKI have not been verified before. Here, we confirmed renal senescence in the unilateral ischemia/reperfusion injury murine model. Senescent TECs could activate fibroblasts and senolytics specifically induced apoptosis of senescent TECs. Next, we demonstrated that senolytics could reduce renal senescence and ameliorate renal fibrosis in both unilateral renal ischemia/reperfusion injury and multiple-cisplatin-treatment murine models. Our results indicate senescent TECs as a vital factor in renal fibrosis progression, and senolytic therapy might be promising for treating CKD post-AKI.


Subject(s)
Acute Kidney Injury/drug therapy , Cellular Senescence/drug effects , Cisplatin/pharmacology , Reperfusion Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Fibrosis , Male , Mice , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
18.
J Nutr Biochem ; 88: 108558, 2021 02.
Article in English | MEDLINE | ID: mdl-33249184

ABSTRACT

Neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to be correlated with cognitive deficits in Alzheimer's disease (AD). Previously, some studies have demonstrated that lycopene (LYCO) or human amniotic epithelial cells (HAECs) could attenuate inflammation in AD. Specifically, the choroid plexus (CP), an epithelial layer that forms the blood-cerebrospinal fluid barrier, is able to modulate the cognitive function, through changes in the neuroinflammatory response and in brain immune surveillance. However, it is unclear if LYCO can interact with HAECs to improve neuroinflammation at the CP. Thus, this study chose the region of interest, considered the feasibility of using a combination of LYCO and HAECs, as a therapeutic agent for immunomodulatory effects at the CP in an acutely induced AD rat model. Results showed that oral administration of LYCO, HAECs transplantation, and their combination significantly improved cognitive deficits in water maze test, decreased the level of proinflammatory mediators (TNF-α and IL-1ß), increased the level of anti-inflammatory mediators (IL-10 and TGF-ß1) in the cerebro-spinal fluid, and hippocampal tissue. Interestingly, LYCO administration, HAECs transplantation and their combination reversed the Aß1-42 induced up-regulation of Toll like receptor 4 and nuclear factor-κB p65 mRNA and protein expressions at the CP. This study provided the novel experimental evidence for the influence of co-treatment with LYCO and HAECs on immunomodulatory capabilities of CP. It could also warrant therapeutic window for the pathophysiology of AD and the associated underlying mechanisms at the CP.


Subject(s)
Alzheimer Disease/drug therapy , Amnion/metabolism , Choroid Plexus/metabolism , Epithelial Cells/metabolism , Inflammation/drug therapy , Lycopene/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cognitive Dysfunction/drug therapy , Female , Hippocampus/metabolism , Humans , Inflammation/metabolism , Male , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Transforming Growth Factor beta1/metabolism
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(12): 1784-1792, 2020 Dec 30.
Article in Chinese | MEDLINE | ID: mdl-33380388

ABSTRACT

OBJECTIVE: To investigate the effect of palbociclib on cell cycle progression and proliferation of human renal tubular epithelial cells. METHODS: Human renal tubular epithelial cell line HK-2 was treated with 1, 5, 10, and 20 µmol/L of palbociclib, and the changes in cell proliferation and viability were examined by cell counting and CCK8 assay. EDU staining was used to assess the proliferation of HK-2 cells following palbiciclib treatment at different concentrations for 5 days. The effect of palbociclib on cell cycle distribution of HK-2 cells was evaluated using flow cytometry. SA-ß-Gal staining and C12FDG senescence staining were used to detect senescence phenotypes of HK-2 cells after palbociclib treatment at different concentrations for 5 days. The relative mRNA expression levels of P16, P21, and P53 and the genes associated with senescence-related secretion phenotypes were detected by RT-PCR, and the protein expressions of P16, P21 and P53 were detected by Western blotting. RESULTS: Palbociclib inhibited HK-2 cell proliferation and induced cell cycle arrest in G1 phase. Compared with the control cells, HK-2 cells treated with high-dose (10 µmol/L) palbociclib exhibited significantly suppressed cell proliferation activity, and the inhibitory effect was the most obvious on day 5 (P < 0.01). Palbociclib treatment significantly reduced the number of cells in S phase (P < 0.01) and induced senescence of HK-2 cells. The results of SA-ß-Gal and C12FDG senescence staining showed a significantly enhanced activity of intracellular senescence-related galactosidase in palbociclib-treated HK-2 cells, suggesting significant senescence of the cells (P < 0.01). RT-PCR and Western blotting showed that palbociclib treatment significantly increased the mRNA and protein expression levels of P16, P21, and P53 in HK-2 cells (P < 0.01); the mRNA expression levels of senescence-related secretory factors also increased significantly in HK-2 cells after palbociclib treatment (P < 0.01). CONCLUSIONS: Palbociclib induces HK-2 cell senescence by causing cell growth arrest and delaying cell cycle progression.


Subject(s)
Piperazines , Pyridines , Cell Cycle , Cell Cycle Checkpoints , Cellular Senescence , Epithelial Cells , Humans , Piperazines/pharmacology , Pyridines/pharmacology , Tumor Suppressor Protein p53/genetics
20.
Mol Ther Nucleic Acids ; 22: 1-16, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32882480

ABSTRACT

The transforming growth factor-ß (TGF-ß)/Smads signal plays an important role in cancer metastasis by mediating the epithelial-mesenchymal transition (EMT) in cancer cells. lnc-TSI is a recently identified long noncoding RNA that negatively regulates the TGF-ß/Smads signal. The present study was conducted to test the hypothesis that lnc-TSI inhibits metastasis in clear cell renal cell carcinoma (ccRCC) by regulating the TGF-ß/Smad3 pathway. Herein, we show that lnc-TSI was upregulated in ccRCC cells and tissue and was associated with activation of the TGF-ß/Smads signal. Depleting lnc-TSI enhanced tumor cell invasion and metastasis in vitro and ccRCC lung metastasis in vivo, whereas overexpressing lnc-TSI inhibited ccRCC cell invasion and tumor metastasis. Mechanistic studies indicated that lnc-TSI specifically inhibited the phosphorylation of Smad3 and subsequent EMT by binding with the MH2 domain of Smad3 to block the interaction between Smad3 and TGF-ß receptor I in ccRCC cells. In a cohort of 150 patients with ccRCC, expression of lnc-TSI in tumors was negatively correlated with phosphorylated (p)Smad3 and activated EMT markers. Patients with expression of tumor lnc-TSI greater than or equal to the median at radical nephrectomy had a higher survival rate compared to those with lnc-TSI below the median during follow-up. These findings reveal a new regulatory mechanism of ccRCC metastasis and suggest a potential molecular target for the development of anti-cancer drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...