Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(38): 88548-88562, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37436620

ABSTRACT

Coal gangue, as an associated product of coal mining, can cause a large number of piles to undergo slow oxidation and spontaneous combustion, resulting in the production of toxic and harmful gases, leading to casualties, environmental damage, and economic losses. Gel foam has been extensively employed as a fire-retardant material in coal mine fire prevention. The thermal stability and rheological properties of the newly developed gel foam were investigated in this study, as well as its oxygen barrier properties and fire extinguishing effect which were evaluated through programmed temperature rise and field fire extinguishing experiments. The experiment indicated that the temperature endurance of the new gel foam was around twice that of the ordinary gel foam, and this resistance decreased with the increment of foaming times. Moreover, the temperature endurance of the new gel foam with a stabilizer concentration of 0.5% was superior to that of 0.7% and 0.3%. Temperature has a negative effect on the rheological properties of the new gel foam, while the foam stabilizer concentration has a positive effect. The oxygen barrier performance experiment results showed that the CO release rate of coal samples treated with the new gel foam rose relatively slowly with temperature, and the CO concentration of coal samples treated with the new gel foam was only 159 ppm at 100 °C, which was significantly lower than 361.1 ppm after two-phase foam treatment and 715 ppm after water treatment. Through simulating the spontaneous combustion experiment of coal gangue, it was demonstrated that the new gel foam has a much better extinguishing effect than water and traditional two-phase foam. The new gel foam cools gradually and does not re-ignite during the fire extinguishing process, while the other two materials re-ignite after being extinguished.


Subject(s)
Coal Mining , Fires , Spontaneous Combustion , Coal , Fires/prevention & control , Coal Mining/methods , Oxygen
2.
J Chem Inf Model ; 60(12): 5735-5745, 2020 12 28.
Article in English | MEDLINE | ID: mdl-32786695

ABSTRACT

The emergence of the new coronavirus (nCoV-19) has impacted human health on a global scale, while the interaction between the virus and the host is the foundation of the disease. The viral genome codes a cluster of proteins, each with a unique function in the event of host invasion or viral development. Under the current adverse situation, we employ virtual screening tools in searching for drugs and natural products which have been already deposited in DrugBank in an attempt to accelerate the drug discovery process. This study provides an initial evaluation of current drug candidates from various reports using our systemic in silico drug screening based on structures of viral proteins and human ACE2 receptor. Additionally, we have built an interactive online platform (https://shennongproject.ai/) for browsing these results with the visual display of a small molecule docked on its potential target protein, without installing any specialized structural software. With continuous maintenance and incorporation of data from laboratory work, it may serve not only as the assessment tool for the new drug discovery but also an educational web site for the public.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Computer Simulation , Databases, Pharmaceutical , Drug Design , Humans , Molecular Docking Simulation , Protein Conformation , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Software , Viral Proteins/metabolism
3.
Small ; 16(19): e2000779, 2020 May.
Article in English | MEDLINE | ID: mdl-32285646

ABSTRACT

The skin of springtails is well-known for being able to repel water and organic liquids using their hexagonally arranged protrusions with reentrant structures. Here, a method to prepare 100 nm-sized nanohoodoo arrays with quasi-doubly reentrant structures over square centimeters through combining the nanosphere lithography and the template-protected selective reactive ion etching technique is demonstrated. The top size of the nanohoodoos, the intra-nanohoodoo distance, and the height of the nanohoodoos can be readily controlled by the plasma-etching time of the polystyrene (PS) spheres, the size of the PS spheres used, and the reactive ion etching time of silicon. The strong structural control capability allows for the study of the relationship between the nanohoodoo structure and the wetting property. Superamphiphobic nanohoodoo arrays with outstanding water/organic liquid repellent properties are finally obtained. The superamphiphobic and liquid repellent properties endow the nanohoodoo arrays with remarkable self-cleaning performance even using hot water droplets, anti-fogging performance, and the surface-enhanced Raman scattering sensitivity improvement by enriching the analyte molecules on the nanohoodoo arrays. Overall, the simple and massive production of the superamphiphobic nanohoodoo structures will push their practical application processes in diverse fields where wettability and liquid repellency need to be carefully engineered.

4.
Genomics Proteomics Bioinformatics ; 18(6): 749-759, 2020 12.
Article in English | MEDLINE | ID: mdl-33704069

ABSTRACT

On January 22, 2020, China National Center for Bioinformation (CNCB) released the 2019 Novel Coronavirus Resource (2019nCoVR), an open-access information resource for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 2019nCoVR features a comprehensive integration of sequence and clinical information for all publicly available SARS-CoV-2 isolates, which are manually curated with value-added annotations and quality evaluated by an automated in-house pipeline. Of particular note, 2019nCoVR offers systematic analyses to generate a dynamic landscape of SARS-CoV-2 genomic variations at a global scale. It provides all identified variants and their detailed statistics for each virus isolate, and congregates the quality score, functional annotation, and population frequency for each variant. Spatiotemporal change for each variant can be visualized and historical viral haplotype network maps for the course of the outbreak are also generated based on all complete and high-quality genomes available. Moreover, 2019nCoVR provides a full collection of SARS-CoV-2 relevant literature on the coronavirus disease 2019 (COVID-19), including published papers from PubMed as well as preprints from services such as bioRxiv and medRxiv through Europe PMC. Furthermore, by linking with relevant databases in CNCB, 2019nCoVR offers data submission services for raw sequence reads and assembled genomes, and data sharing with NCBI. Collectively, SARS-CoV-2 is updated daily to collect the latest information on genome sequences, variants, haplotypes, and literature for a timely reflection, making 2019nCoVR a valuable resource for the global research community. 2019nCoVR is accessible at https://bigd.big.ac.cn/ncov/.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral , Genomics , Haplotypes , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...