Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 7(19): 2001402, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33042753

ABSTRACT

N6-methyladenosine (m6A) is rapidly being studied and uncovered to play a significant role in various biological processes as well as in RNA fate and functions, while the effects of defined m6A sites are rarely characterized for the lack of convenient tools. To provide an applicable method to remove m6A modification at specific loci, an m6A editing system called "targeted RNA demethylation by SunTag system (TRADES)" is engineered. In this system, the targeting element dCas13b is fused to ten copies of GCN4 peptides which can recruit multiple scFv-fusion RNA demethylase to demethylate the target m6A site. Owing to this design, TRADES is more flexible to the indistinct m6A sites for its wide editing window. By site-specific demethylation of messenger RNA (mRNA) SON A2699, the lifetime of SON RNA is successfully prolonged in HeLa cells. Meanwhile, TRADES negligibly influences the lifetime of other non-targeted transcripts. TRADES also can regulate the gene expression of target transcript in an m6A-dependent manner. Moreover, the interference occuring for HBV and HIV replications demonstrates that the TRADES system holds potential in viral life cycle regulation and clinical applications.

2.
ACS Chem Biol ; 15(6): 1554-1565, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32401486

ABSTRACT

The development of a tumor-targeted immunotherapy is highly required. The most advanced application is the use of CD19 chimeric antigen receptor (CAR)T (CAR-T) cells to B cell malignancies, but there are still side effects including potential carcinogenicity of lentiviral or retroviral insertion into the host cell genome. Here, we developed a nonviral aptamer-T cell targeted strategy for tumor therapy. Tumor cells surface-specific ssDNA aptamers were conjugated to CD3+T cells (aptamer-T cells) using N-azidomannosamine (ManNAz) sugar metabolic cell labeling and click chemistry. We found that the aptamer-T cells could specifically target and bind to tumor cells (such as SGC-7901 gastric cancer cell and CT26 colon carcinoma cell) in vitro and in mice after adoptively transfer in. Aptamer-T cells led to significant regression in tumor volume due to being enriched at tumor microenvironment and producing strong cytotoxicity activities of CD3+T cells with enhanced perforin, granzyme B, CD107a, CD69, and FasL expression. Moreover, aptamer-T displayed even stronger antitumor effects than an anti-PD1 immune-checkpoint monoclonal antibody (mAb) treatment in mice and combination with anti-PD1 yielded synergic antitumor effects. This study uncovers the strong potential of the adoptive nonviral aptamer-T cell strategy as a feasible and efficacious approach for tumor-targeted immunotherapy application.


Subject(s)
Aptamers, Nucleotide/chemistry , Carbohydrate Metabolism , Click Chemistry , Neoplasms/therapy , Sugars/chemistry , T-Lymphocytes/metabolism , Animals , Antigens, CD19/immunology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes/immunology , Tumor Microenvironment , Xenograft Model Antitumor Assays
4.
Vet Microbiol ; 242: 108578, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32122589

ABSTRACT

Rabies is a highly lethal infectious zoonosis caused by rabies virus (RABV), and the mortality rate is almost 100 % once clinical symptoms appear, which poses a huge threat to public health security across the many parts of the word. Vaccination is reported to be the most effective approach to prevent the disease. G protein is the only protein present on the surface of RABV, it also could induce humoral immunity to produce virus neutralizing antibodies (VNA) and stimulate T cells to produce cellular immunity. Adeno-associated viruses (AAVs) have been used as vectors for gene therapy of different human diseases for its low immunogenicity, high safety and long-term stable expression. To develop a safe and effective vaccine, recombinant AAVs containing different kind of G gene were constructed. After intramuscular (i.m.) immunization in mice, all of these rAAV-G vaccines could induce the production of high levels of VNA and effective cellular immune response. Consistently, all of the rAAV-G vaccines could provide protection against lethal RABV challenge. Our results shown that the rAAV-G vaccines could be potential candidates used in the control of RABV infection. In addition, rAAV-G as a vaccine has many advantages of low preparation cost, simple storage and transportation conditions (4 °C storage and transportation), simple immunization program (only one immunization) and so on. Thence, the rAAV-G vaccines could be potential candidates used in the control of RABV infection.


Subject(s)
Immunity, Cellular , Immunity, Humoral , Membrane Glycoproteins/immunology , Rabies Vaccines/immunology , Rabies/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dependovirus/genetics , Dependovirus/immunology , Female , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Rabies/immunology , Rabies Vaccines/genetics , Rabies virus/genetics , Rabies virus/immunology , Vaccination , Viral Proteins/genetics , Viral Proteins/immunology
5.
Glycobiology ; 30(9): 746-759, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32149341

ABSTRACT

Tuberculosis (TB) is the leading infectious cause of mortality worldwide, especially in developing countries. However, effective means for TB diagnosis, especially for bacillus-negative (Bn) TB laboratory diagnosis, are urgently needed. In the present study, serum IgG from each tuberculosis patients and healthy controls was purified using affinity chromatography. The samples were then analyzed using mass spectrometry (MS) and ultraperformance liquid chromatography (UPLC) methods. We quantitatively assessed the changes of serum IgG galactosylation in 567 human serum samples including 377 pulmonary TB patients and 190 healthy donors (HDs). We found significantly more agalactosylated (G0) vs monogalactosylated (G1) and digalactosylated (G2) N-glycans of IgG in TB patients, including smear-negative TB patients, than in HDs. The detection rate of TB diagnostic performance by MS for IgG-Gal ratio G0/(G1 + G2 × 2) is 90.48% for bacillus-positive (Bp) and 73.16% for Bn TB patients. Further, combination of MS method with other routine laboratory TB diagnostic methods significantly increased the detection rate to 91.01%-98.39%. Similar results were observed in Mycobacterium tuberculosis (M. tb) infection mouse models. The decrease in galactosylation of IgG in TB patients was also qualitatively confirmed using specific lectin blot assay. Using the above techniques, we can discriminate the content of IgG G0 with terminal N-acetylglucosamine and IgG-Gal ratio G0/(G1 + G2 × 2) between TB patients and HDs. Our data suggest that quantitative analysis of serum-based IgG-Gal ratio G0/(G1 + G2 × 2) could be used for TB auxiliary diagnosis with high effectiveness and feasibility and its combination with other routine laboratory TB diagnostic methods could remarkably improve the detection rate.


Subject(s)
Immunoglobulin G/blood , Tuberculosis/diagnosis , Adult , Aged , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/blood
6.
J Med Virol ; 91(6): 935-940, 2019 06.
Article in English | MEDLINE | ID: mdl-30624794

ABSTRACT

Neurotropic viruses, such as the rabies virus (RABV) and Japanese encephalitis virus (JEV), induce neuronal dysfunction and complication, causing neuronal damage. Currently, there are still no effective clinical treatments for neuronal injury caused by neurotropic viruses. Memantine, a drug capable of passing through the blood-brain barrier, noncompetitively and reversibly binds to n-methyl- d-aspartic acid (NMDA) receptors. Memantine is used to treat Alzheimer's disease by blocking the activation of extra axonal ion channels, thus preventing neuronal degeneration by inhibiting the abnormal cytosolic Ca 2+ increase. To explore whether memantine can alleviate neurological disturbances caused by RABV and JEV, the following experiments were carried out: (1) for primary neurons cultured in vitro infected with RABV, the addition of memantine showed neuroprotection. (2) In the RABV challenge experiments, memantine had limited therapeutic effect, mildly extending the survival time of mice. In contrast, memantine significantly prolonged the survival time of mice infected with JEV, by reducing the intravascular cuff and inflammatory cell infiltration in mice. Furthermore, memantine decreases the amount of JEV virus in mice brain.


Subject(s)
Encephalitis Virus, Japanese/drug effects , Memantine/pharmacology , Neurons/drug effects , Neurons/virology , Neuroprotective Agents/pharmacology , Rabies virus/drug effects , Animals , Brain/drug effects , Brain/virology , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Neurons/pathology
7.
Oncotarget ; 8(27): 43822-43837, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28388579

ABSTRACT

Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication.


Subject(s)
HSC70 Heat-Shock Proteins/genetics , Host-Pathogen Interactions/genetics , RNA, Spliced Leader , RNA, Viral/genetics , Rabies virus/physiology , Rabies/virology , Virus Replication , Animals , Cell Line , Gene Expression Regulation, Viral , Humans , Mice , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...