Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36363935

ABSTRACT

There are few methods and insufficient accuracy for growth differentiation factor 11 (GDF11) concentration detection. In this paper, we designed a twisted fiber cladding surface plasmon resonance (SPR) sensor, which can achieve a high precision detection of GDF11 concentration. The new structure of the fiber cladding SPR sensor was realized by coupling the light in the fiber core to the cladding through fiber thermal fusion twisting micromachining technology; a series of functionalized modifications were made to the sensor surface to obtain a fiber sensor capable of GDF11 specific recognition. The experimental results showed when GDF11 antigen concentration was 1 pg/mL-10 ng/mL, the sensor had a detection sensitivity of 2.518 nm/lgC, a detection limit of 0.34 pg/mL, and a good log-linear relationship. The sensor is expected to play a role in the rapid and accurate concentration detection of pathological study for growth differentiation factors.

2.
Biomed Opt Express ; 13(12): 6659-6670, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36589582

ABSTRACT

In order to perform microfluidic detection of cytokines with low concentration, such as growth differentiation factor 11 (GDF11), the most common method is to construct microfluidic channels and integrate them with SPR sensing units. In this paper, we proposed a novel all-fiber SPR microfluidic chip for GDF11 detection. The method was to construct the SPR sensing area on a designed D-shaped multimode fiber, which was nested inside a quartz tube to form a semi-cylindrical microfluidic channel. The surface of the SPR sensing area experienced sensitization and specifically modification to achieve the specific detection of GDF11. When the sensitivity of detection was 1.38 nm/lg(g/mL) and the limit of detection was 0.52 pg/mL, the sample consumption was only 0.4 µL for a single detection. The novel all-fiber SPR microfluidic detection chip has the advantages of flexible design, compact structure and low sample consumption, which is expected to be used in wearable biosensing devices for real-time online monitoring of trace cytokines in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...