Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 980
Filter
1.
Acad Pediatr ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823499

ABSTRACT

OBJECTIVE: Using a structural racism framework, we assessed for racial inequities in continuity of care, using the Usual Provider Continuity Index (UPC - the proportion of visits with the provider the patient saw most frequently out of all visits), in a set of large pediatric academic clinics. METHODS: We conducted a retrospective cohort study. Patients 12-24 months seen at 3 pediatric academic primary care clinics for any visit during October 1-31, 2021 were included. We then reviewed continuity for these patients in the preceding 12 months. Outcomes included each patient's UPC for all visits, and a modified UPC for well child checks only (UPC Well). Covariates included race, ethnicity, insurance, clinic site, age, sex, care management, or seeing a social worker. We evaluated for differences in outcomes using bivariate analyses and multivariable regression models. RESULTS: Our cohort included 356 patients (74% Black, 5% Hispanic, 85% Medicaid, 52% female, median age 15.8 months). The median UPC was 0.33 and median UPC Well was 0.40. Black patients had significantly lower median values for UPC (0.33 Black vs 0.40 non-Black, p<0.0001) and UPC Well (0.33 Black vs 0.50 non-Black, p<0.0001). There were similar inequities in continuity rates by insurance and clinic site. In multivariable models, clinic site was the only variable significantly associated with continuity. CONCLUSIONS: Clinic sites serving higher percentages of Black patients had lower rates of continuity. The main driver of racial inequities in continuity rates was at the institutional level. WHAT'S NEW: This is the first study to assess racial inequities in primary care provider continuity rates across clinics within a single academic pediatric center. Racial inequities in continuity have not previously been described across pediatric academic primary care clinic sites.

2.
Cogn Neurodyn ; 18(3): 893-906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826664

ABSTRACT

Mental subtraction, involving numerical processing and operation, requires a complex interplay among several brain regions. Diverse studies have utilized scalp electroencephalograph, electrocorticogram, or functional magnetic resonance imaging to resolve the structure pattern and functional activity during subtraction operation. However, a high resolution of the spatial-temporal understanding of the neural mechanisms involved in mental subtraction is unavailable. Thus, this study obtained intracranial stereoelectroencephalography recordings from 20 patients with pharmacologically resistant epilepsy. Specifically, two sample-delayed mismatch paradigms of numeric comparison and subtracting results comparison were used to help reveal the time frame of mental subtraction. The brain sub-regions were chronologically screened using the stereoelectroencephalography recording for mental subtraction. The results indicated that the anterior cortex, containing the frontal, insular, and parahippocampous, worked for preparing for mental subtraction; moreover, the posterior cortex, such as parietal, occipital, limbic, and temporal regions, cooperated during subtraction. Especially, the gamma band activities in core regions within the parietal-cingulate-temporal cortices mediated the critical mental subtraction. Overall, this research is the first to describe the spatiotemporal activities underlying mental subtraction in the human brain. It provides a comprehensive insight into the cognitive control activity underlying mental arithmetic. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09937-z.

3.
Asian J Androl ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38727211

ABSTRACT

ABSTRACT: Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.

4.
Article in English | MEDLINE | ID: mdl-38715451

ABSTRACT

BACKGROUND: Feeding difficulty is widely recognized in patients with Down syndrome, and many patients require gastrostomy tube (G-tube) placement for nutrition. No reliable factors have been identified to predict the expected duration of G-tube feeds in patients with Down syndrome. This descriptive cohort study aimed to determine the factors affecting the duration of G-tube feeds. We also investigated change in body mass index (BMI) from G-tube placement to discontinuation. METHODS: Medical records of patients with Down syndrome seen by a pediatric gastroenterologist at a tertiary care center between September 1986 and December 2021 were reviewed. Data collection included demographics, anthropometrics, comorbidities, and feeding route. Comparison was performed between patients who discontinued G-tube feeds and those who did not. RESULTS: Two hundred twenty patients (45% female) were included. The median age at G-tube placement was 5 months (interquartile range [IQR]: 0.2-1.3 years). There were 113 (51%) patients who discontinued G-tube feeds, after a median duration of 31.6 months (IQR: 15.6-55.7 months). Tracheostomy was the only covariant associated with a longer duration of G-tube feeds (158 months vs 53 months; P = 0.002). Neither age at G-tube placement nor any comorbidities were associated with BMI status at discontinuation of G-tube. CONCLUSION: In our cohort of patients with Down syndrome, age at placement of G-tube did not impact the duration of G-tube feeds. Most patients who had a G-tube placed were likely to require enteral feeds for at least 1 year. Those who had a tracheostomy needed their G-tube for a longer time.

5.
Nanotechnology ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710176

ABSTRACT

Electrochromic polymers (ECPs) have great application potential in flexible displays, and there is an increasing expectation of using green methods to form ECP films. Herein, we propose a modified microemulsion method to prepare Cyan/Magenta/Yellow (C/M/Y) water-dispersed electrochromic polymer nanoparticles systems. Three polymer films (WDECP-C/M/Y) maintain similar electrochemical properties compared to their corresponding organic solvent-based polymer films. It is intriguing that WDECP-C/M/Y exhibit better electrochromic properties in terms of higher cycling stability (97.24%, 95.05%, and 52.84%, respectively) and faster switching time (0.94 s, 1.09 s, and 1.34 s for coloring time, respectively) due to the introduction of nanoparticles. In addition, it can achieve various desired colors by blending the C/M/Y water-dispersed electrochromic polymer nanoparticles systems in different ratios. The calculated chromaticity coordinates of the blending polymer films show close values to the experimental observation, and the calculated ΔE*ab values range from 2.6 to 10.3, which may provide theoretical guidance for precisely color control. Finally, large-scale and patterned devices were assembled, which can achieve colored-to-colorless reversible electrochromism at a low driving voltage of 0 to 1.5 V. This work puts forward a universal and environmentally sustainable strategy to prepare water-dispersed electrochromic polymer nanoparticles systems, demonstrating their wide range of applications in display devices and electronic tags.

6.
Article in English | MEDLINE | ID: mdl-38733164

ABSTRACT

Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with progressive senescence in vascular smooth muscle cells (VSMCs). The vascular protective effect of FGF21 has gradually gained increasing attention, but its role in diabetes-induced vascular senescence needs further investigation. In this study, diabetic mice and primary VSMCs are transfected with an FGF21 activation plasmid and treated with a peroxisome proliferator-activated receptor γ (PPARγ) agonist (rosiglitazone), an NLRP3 inhibitor (MCC950), and a spleen tyrosine kinase (SYK)-specific inhibitor, R406, to detect senescence-associated markers. We find that FGF21 overexpression significantly restores the level of catalase (CAT), vascular relaxation, inhibits the intensity of ROSgreen fluorescence and p21 immunofluorescence, and reduces the area of SA-ß-gal staining and collagen deposition in the aortas of diabetic mice. FGF21 overexpression restores CAT, inhibits the expression of p21, and limits the area of SA-ß-gal staining in VSMCs under high glucose conditions. Mechanistically, FGF21 inhibits SYK phosphorylation, the production of the NLRP3 dimer, the expression of NLRP3, and the colocalization of NLRP3 with PYCARD (ASC), as well as NLRP3 with caspase-1, to reverse the cleavage of PPARγ, preserve CAT levels, suppress ROSgreen density, and reduce the expression of p21 in VSMCs under high glucose conditions. Our results suggest that FGF21 alleviates vascular senescence by regulating the SYK-NLRP3 inflammasome-PPARγ-catalase pathway in diabetic mice.

7.
Sci Rep ; 14(1): 11211, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755247

ABSTRACT

Lung adenocarcinoma (LUAD) is a malignancy with an abysmal survival rate. High metastasis is the leading cause of the low survival rate of LUAD. NCAPH, an oncogene, is involved in the carcinogenesis of LUAD. However, the regulation of NCAPH in LUAD remains controversial. In this work, we identified an up-regulation of NCAPH in LUAD tissues. Patients who expressed more NCAPH had shorter overall survival (OS). Furthermore, NCAPH overexpression promoted LUAD cell migration while inhibiting apoptosis. MiR-1976 and miR-133b were predicted to target NCAPH expression by searching TargetScan and linkedomics databases. Following that, we confirmed that miR-1976 suppressed NCAPH by directly targeting a 7-bp region of NCAPH 3' untranslated regions (UTR). In addition, increased expression of miR-1976 decreased the proliferation & migration and promoted apoptosis of LUAD cells, and the re-introduction of NCAPH reversed these influences. Furthermore, the xenograft and metastasis mouse models also confirmed that miR-1976 inhibited tumor growth and metastasis in vivo by targeting NCAPH. Finally, we found that MiR-1976 targeting NCAPH blocked the activation of NF-κB. In conclusion, miR-1976 inhibits NCAPH activity in LUAD and acts as a tumor suppressor. The miR-1976/NCAPH/NF-κB axis may, in the future, represent crucial diagnostic and prognostic biomarkers and promising therapeutic options.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Cell Movement/genetics , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Male , Female , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Phenotype , Mice, Nude , Signal Transduction
8.
Biochem Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776052

ABSTRACT

Circular RNAs (circRNAs) play critical roles in the recurrence and progression of non-small-cell lung cancer (NSCLC). This study aimed to investigate the function and underlying mechanism of a novel circRNA (circRPPH1) in NSCLC. Localization of circRPPH1 was determined via FISH assay, while cell proliferation was assessed via CCK8 and colony formation assay. Cell migration and invasion were studied using transwell assay, while binding sites between miR-326 and circRPPH1 or ERBB4 were verified by luciferase reporter, RIP, and RNA pull-down assays. Moreover, xenograft assay was performed to verify the in vivo roles of circRPPH1. Results indicated that circRPPH1 was highly expressed in NSCLC tissues and cells, where circRPPH1 levels were predictive of poor prognosis. The malignant behavior of NSCLC cells was exacerbated by overexpressing circRPPH1, while opposite effects were observed when it was knocked down. Direct interaction between miR-326 and circRPPH1 or ERBB4 was confirmed in NSCLC cells, while rescue experiment results showed that circRPPH1 exerted an oncogenic role via miR-326-ERBB4 signal axis. Moreover, in vitro, growth of NSCLC cells was significantly attenuated following circRPPH1 depletion. The study concluded that circRPPH1 was involved in promoting NSCLC progression via the miR-326/ERBB4 axis, which provided a novel potential target for the diagnosis or treatment of NSCLC.

9.
Commun Biol ; 7(1): 613, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773248

ABSTRACT

Understanding how to increase soybean yield is crucial for global food security. The genetic and epigenetic factors influencing seed size, a major crop yield determinant, are not fully understood. We explore the role of DNA demethylase GmDMEa in soybean seed size. Our research indicates that GmDMEa negatively correlates with soybean seed size. Using CRISPR-Cas9, we edited GmDMEa in the Dongnong soybean cultivar, known for small seeds. Modified plants had larger seeds and greater yields without altering plant architecture or seed nutrition. GmDMEa preferentially demethylates AT-rich transposable elements, thus activating genes and transcription factors associated with the abscisic acid pathway, which typically decreases seed size. Chromosomal substitution lines confirm that these modifications are inheritable, suggesting a stable epigenetic method to boost seed size in future breeding. Our findings provide insights into epigenetic seed size control and suggest a strategy for improving crop yields through the epigenetic regulation of crucial genes. This work implies that targeted epigenetic modification has practical agricultural applications, potentially enhancing food production without compromising crop quality.


Subject(s)
DNA Methylation , DNA Transposable Elements , Glycine max , Seeds , Glycine max/genetics , Seeds/genetics , Seeds/growth & development , DNA Transposable Elements/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
10.
J Oral Rehabil ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736104

ABSTRACT

BACKGROUND: Obstructive sleep apnea hypopnea syndrome (OSAHS) is a serious and potentially life-threatening disease. Mandibular advancement device (MAD) has the characteristics of non-invasive, comfortable, portable and low-cost, making it the preferred treatment for mild-to-moderate OSAHS. Our previous studies found that abnormal contractility and fibre type distribution of the genioglossus could be caused by OSAHS. However, whether the mitochondria participate in these tissue changes is unclear. The effect of MAD treatment on the mitochondria of the genioglossus in OSAHS is also uncertain. OBJECTIVE: To examine the morphology and function of mitochondria from the genioglossus in a rabbit model of obstructive sleep apnea-hypopnea syndrome (OSAHS), as well as these factors after insertion of a mandibular advancement device (MAD). METHODS: Thirty male New Zealand white rabbits were randomised into three groups: control, OSAHS and MAD, with 10 rabbits in each group. Animals in Group OSAHS and Group MAD were induced to develop OSAHS by injection of gel into the submucosal muscular layer of the soft palate. The rabbits in Group MAD were fitted with a MAD. The animals in the control group were not treated. Further, polysomnography (PSG) and cone-beam computed tomography (CBCT) scan were used to measure MAD effectiveness. CBCT of the upper airway and PSG suggested that MAD was effective. Rabbits in the three groups were induced to sleep for 4-6 h per day for eight consecutive weeks. The genioglossus was harvested and detected by optical microscopy and transmission electron microscopy. The mitochondrial membrane potential was determined by laser confocal microscopy and flow cytometry. Mitochondrial complex I and IV activities were detected by mitochondrial complex assay kits. RESULTS: OSAHS-like symptoms were induced successfully in Group OSAHS and rescued by MAD treatment. The relative values of the mitochondrial membrane potential, mitochondrial complex I activity and complex IV activity were significantly lower in Group OSAHS than in the control group; however, there was no significant difference between Group MAD and the control group. The OSAHS-induced injury and the dysfunctional mitochondria of the genioglossus muscle were reduced by MAD treatment. CONCLUSION: Damaged mitochondrial structure and function were induced by OSAHS and could be attenuated by MAD treatment.

11.
J Nanobiotechnology ; 22(1): 247, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741123

ABSTRACT

Tyrosine kinase inhibitors have been the standard treatment for patients with Philadelphia chromosome-positive (Ph+) leukemia. However, a series of issues, including drug resistance, relapse and intolerance, are still an unmet medical need. Here, we report the targeted siRNA-based lipid nanoparticles in Ph+ leukemic cell lines for gene therapy of Ph+ leukemia, which specifically targets a recently identified NEDD8 E3 ligase RAPSYN in Ph+ leukemic cells to disrupt the neddylation of oncogenic BCR-ABL. To achieve the specificity for Ph+ leukemia therapy, a single-chain fragment variable region (scFv) of anti-CD79B monoclonal antibody was covalently conjugated on the surface of OA2-siRAPSYN lipid nanoparticles to generate the targeted lipid nanoparticles (scFv-OA2-siRAPSYN). Through effectively silencing RAPSYN gene in leukemic cell lines by the nanoparticles, BCR-ABL was remarkably degraded accompanied by the inhibition of proliferation and the promotion of apoptosis. The specific targeting, therapeutic effects and systemic safety were further evaluated and demonstrated in cell line-derived mouse models. The present study has not only addressed the clinical need of Ph+ leukemia, but also enabled gene therapy against a less druggable target.


Subject(s)
Fusion Proteins, bcr-abl , Nanoparticles , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Nanoparticles/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Gene Silencing , RNA, Small Interfering , NEDD8 Protein/metabolism , NEDD8 Protein/genetics , Mice, Inbred BALB C , Apoptosis/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Genetic Therapy/methods , Cell Proliferation/drug effects , Female
12.
Biochem Pharmacol ; 225: 116315, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797268

ABSTRACT

OC-2 plays a vital role in tumor growth, metastasis and angiogenesis, but molecular mechanism how OC-2 regulates angiogenic factors is unclear. We found that OC-2 was highly expressed in HepG2, COLO, MCF-7, SKOV3 cells and rectum carcinoma tissues, and angiogenic factors levels were positively related to OC-2. Then OC-2 KD inhibited the tumor growth, metastasis and angiogenesis process in vitro and vivo. ChIP-Seq showed that 228 target genes of OC-2 were identified and they were associated with tumor growth, metastasis, angiogenesis and signal transduction; OC-2 bound to ZKSCAN3 at promoter region. Luciferase assays showed that ZKSCAN3 was identified as target gene of OC-2 and VEGFA was identified as target gene of ZKSCAN3; OC-2 promoted VEGFA expression via activating ZKSCAN3 transcriptional program. Importantly, OC-2 KD down-regulated VEGFA secretion to suppress tumor angiogenesis of HUVECs. Besides VEGFA, OC-2 was positively correlated with other angiogenic factors HIF-1α, FGF2, EGFL6 and HGF. Meanwhile, ERK1/2 and Smad1 signaling pathways might be related to function of OC-2 driving tumor aggressiveness. We revealed that OC-2 might regulate tumor growth, metastasis, angiogenesis via ERK1/2, Smad1 signaling pathways and regulate VEGFA expression for tumor angiogenesis via activating ZKSCAN3 transcriptional program, indicating that OC-2 was a convincing target to develop novel anti-tumor drugs based on angiogenesis.

13.
Am J Med Sci ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777153

ABSTRACT

BACKGROUND: As exacerbations of chronic obstructive pulmonary disease (COPD) are one of the leading causes of hospitalization and are associated with significant mortality, it is particularly important to accurately assess the risk of exacerbations in COPD. Most of the current clinical biomarkers are related to inflammation and few consider how ion levels affect COPD. Chloride ion, the second most abundant serum electrolyte, has been shown to be associated with poor prognoses in several diseases, but their relationship with COPD remains unclear. METHODS: In total, 105 patients with acute exacerbations of COPD were recruited. Data on clinical characteristics, lung function, blood count, blood biochemistry, relevant scales including the Clinical COPD Questionnaire (CCQ), BODE (BMI, airflow obstruction, dyspnea, exercise capacity) index and the St. George's Respiratory Questionnaire (SGRQ) were collected from all patients for statistical analysis. RESULT: There were significant differences in lung function indicators and disease severity in the low chloride ion subgroup compared with the high chloride ion subgroup. On multiple logistic regression analysis, chloride ion was an independent factor affecting lung function in COPD patients (OR = 0.808, 95% CI: 0.708 - 0.922, p = 0.002). The sensitivity of chloride ion in predicting COPD severity was 78%, the specificity was 63%, and the area under the curve was 0.734 (p < 0.001). Subgroup analysis showed that chloride ion was a stronger predictor in male and smoking patients. CONCLUSIONS: Chloride ion was a novel prognostic biomarker for COPD, and low levels of chloride ion were independently associated with exacerbations in COPD patients.

14.
World J Hepatol ; 16(5): 809-821, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818287

ABSTRACT

BACKGROUND: Acute-on-chronic liver disease (AoCLD) accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases. AIM: To explore the characterization of AoCLD to provide theoretical guidance for the accurate diagnosis and prognosis of AoCLD. METHODS: Patients with AoCLD from the Chinese Acute-on-Chronic Liver Failure (ACLF) study cohort were included in this study. The clinical characteristics and outcomes, and the 90-d survival rate associated with each clinical type of AoCLD were analyzed, using the Kaplan-Meier method and the log-rank test. RESULTS: A total of 3375 patients with AoCLD were enrolled, including 1679 (49.7%) patients with liver cirrhosis acute decompensation (LC-AD), 850 (25.2%) patients with ACLF, 577 (17.1%) patients with chronic hepatitis acute exacerbation (CHAE), and 269 (8.0%) patients with liver cirrhosis active phase (LC-A). The most common cause of chronic liver disease (CLD) was HBV infection (71.4%). The most common precipitants of AoCLD was bacterial infection (22.8%). The 90-d mortality rates of each clinical subtype of AoCLD were 43.4% (232/535) for type-C ACLF, 36.0% (36/100) for type-B ACLF, 27.0% (58/215) for type-A ACLF, 9.0% (151/1679) for LC-AD, 3.0% (8/269) for LC-A, and 1.2% (7/577) for CHAE. CONCLUSION: HBV infection is the main cause of CLD, and bacterial infection is the main precipitant of AoCLD. The most common clinical type of AoCLD is LC-AD. Early diagnosis and timely intervention are needed to reduce the mortality of patients with LC-AD or ACLF.

15.
Anal Chem ; 96(22): 9051-9059, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776068

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) tags have the advantages of unique fingerprint vibration spectrum, ultranarrow spectral line widths, and weak photobleaching effect, showing great potential for bioimaging. However, SERS imaging is still hindered for further application due to its weak spontaneous Raman scattering, biomolecular signal interference, and long acquisition times. Here, we develop a novel SERS tag of the core (Au)-shell (N-doped graphene) structure (Au@NGs) with ultrastrong and stable Raman signal (2180 cm-1) in the cellular Raman-silent region (1800-2800 cm-1) through base-promoted oxidative decarboxylation of amino acids. Exploring the factors (metal salts, amino acids, catalysts, temperature, etc.) to obtain Au@NGs with the strongest Raman signal commonly requires more than 100,000 separate experiments, while that using an orthogonal array testing strategy is reduced to 56. The existence of deep charge transfer between the Au surface and C≡N-graphene is proved by theoretical calculations, which means the ultrastrong signal of Au@NGs is the joint effect of electromagnetic and chemical enhancement. The Au@NGs have a detection sensitivity down to a single-nanoparticle level, and high-speed and high-resolution cellular imaging (4453 pixels) is obtained within 10 s by global Raman imaging. The combination of Au@NGs-based tags with ultrastrong intrinsic Raman imaging capability and global imaging technology holds great promise for high-speed Raman imaging.


Subject(s)
Gold , Graphite , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Gold/chemistry , Graphite/chemistry , Humans , Metal Nanoparticles/chemistry , Surface Properties , Amino Acids/analysis , Amino Acids/chemistry
16.
J Fungi (Basel) ; 10(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786679

ABSTRACT

Gray mold, caused by Botrytis cinerea, poses significant threats to various crops, while it can be remarkably inhibited by ε-poly-L-lysine (ε-PL). A previous study found that B. cinerea extracts could stimulate the ε-PL biosynthesis of Streptomyces albulus, while it is unclear whether the impact of the B. cinerea signal on ε-PL biosynthesis is direct or indirect. This study evaluated the role of elevated reactive oxygen species (ROS) in efficient ε-PL biosynthesis after B. cinerea induction, and its underlying mechanism was disclosed with a transcriptome analysis. The microbial call from B. cinerea could arouse ROS elevation in cells, which fall in a proper level that positively influenced the ε-PL biosynthesis. A systematic transcriptional analysis revealed that this proper dose of intracellular ROS could induce a global transcriptional promotion on key pathways in ε-PL biosynthesis, including the embden-meyerhof-parnas pathway, the pentose phosphate pathway, the tricarboxylic acid cycle, the diaminopimelic acid pathway, ε-PL accumulation, cell respiration, and energy synthesis, in which sigma factor HrdD and the transcriptional regulators of TcrA, TetR, FurA, and MerR might be involved. In addition, the intracellular ROS elevation also resulted in a global modification of secondary metabolite biosynthesis, highlighting the secondary signaling role of intracellular ROS in ε-PL production. This work disclosed the transcriptional mechanism of efficient ε-PL production that resulted from an intracellular ROS elevation after B. cinerea elicitors' induction, which was of great significance in industrial ε-PL production as well as the biocontrol of gray mold disease.

17.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38722545

ABSTRACT

Objective.In this work, we aim to propose an accurate and robust spectrum estimation method by synergistically combining x-ray imaging physics with a convolutional neural network (CNN).Approach.The approach relies on transmission measurements, and the estimated spectrum is formulated as a convolutional summation of a few model spectra generated using Monte Carlo simulation. The difference between the actual and estimated projections is utilized as the loss function to train the network. We contrasted this approach with the weighted sums of model spectra approach previously proposed. Comprehensive studies were performed to demonstrate the robustness and accuracy of the proposed approach in various scenarios.Main results.The results show the desirable accuracy of the CNN-based method for spectrum estimation. The ME and NRMSE were -0.021 keV and 3.04% for 80 kVp, and 0.006 keV and 4.44% for 100 kVp, superior to the previous approach. The robustness test and experimental study also demonstrated superior performances. The CNN-based approach yielded remarkably consistent results in phantoms with various material combinations, and the CNN-based approach was robust concerning spectrum generators and calibration phantoms.Significance. We proposed a method for estimating the real spectrum by integrating a deep learning model with real imaging physics. The results demonstrated that this method was accurate and robust in estimating the spectrum, and it is potentially helpful for broad x-ray imaging tasks.


Subject(s)
Monte Carlo Method , Neural Networks, Computer , Phantoms, Imaging , X-Rays , Image Processing, Computer-Assisted/methods
18.
Article in English | MEDLINE | ID: mdl-38819178

ABSTRACT

Objective: The objective of this study is to investigate the diagnostic accuracy and prognostic value of amplitude-integrated electroencephalography (aEEG) in neonatal hypoxic ischemic encephalopathy (HIE). Methods: Fifty-three neonates with HIE admitted to our hospital from February 2020 to September 2021 were included in the encephalopathy group, while 22 healthy neonates born in our hospital during the same period were included in the healthy group. The neonates were separated into three subgroups based on their aEEG results: normal, slightly abnormal, and severely abnormal. We investigated the correlation between aEEG monitoring and HIE clinical grading, as well as the rate of HIE abnormal prognosis, and we analyzed the prognostic value of aEEG in HIE. Results: The aEEGs of all neonates in the healthy group were normal. In the encephalopathy group, there were 24 neonates with normal aEEGs (including 20 with mild HIE and 4 with moderate HIE), 16 neonates with mildly abnormal aEEGs (including 4 with mild HIE, 10 with moderate HIE, and 2 with severe HIE), and 13 neonates with severely abnormal aEEGs (including 4 with moderate HIE and 9 with severe HIE). A very close correlation between aEEG monitoring results and HIE grading and prognosis was found (P < .05). The head circumference of neonates with severely abnormal aEEGs was smaller than that of the other two groups and was significantly smaller than that of the healthy group (P < .05). However, there was no significant difference in the body length and weight of neonates in the severely abnormal aEEG group when compared to other groups (P > .05). Conclusion: The brain function of neonates with HIE can be accurately diagnosed with aEEG, and this diagnostic technique has a crucial application value in the early diagnosis and prognosis evaluation of neonatal HIE.

19.
Eur J Oncol Nurs ; 70: 102583, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38631124

ABSTRACT

PURPOSE: To synthesise qualitative research on the parental hope experiences for children with cancer and identify the levels of parental hope experiences and psychosocial adjustment during cancer events. METHODS: Five electronic databases (Cochrane Library, PubMed, Embase, Web of Science, and CINAHL) and three Chinese databases (CNKI, Wanfang, and VIP) were used to retrieve qualitative studies on the hope experiences of parents of children with cancer from inception to February 2023. The Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI) was used to assess the methodological quality of the included studies. Data were synthesised using a thematic analysis. RESULTS: Four analytical themes were identified: the process and way hope exists, sources of hope, positive effects of hope, and obstacles to hope maintenance. CONCLUSIONS: Maintaining hope is crucial for parents who are caring for their children with cancer. There are different sources of hope, and targeted interventions can enhance the experience of hope for parents of children with cancer. Families, healthcare providers, and society should pay more attention to the parents of children with cancer and provide them with psychological, social, and financial support to improve their level of hope and quality of care.

20.
Macromol Rapid Commun ; : e2400031, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38620002

ABSTRACT

The systematic study of two ionic porous organic polymers (iPOPs) based on viologens and their first applications in the electrochromic field are reported. The viologen-based iPOPs are synthesized by electrochemical polymerization with cyano groups, providing a simple and controllable method for iPOPs that solves the film preparation problems common to viologens. After the characterization of these iPOPs, a detailed study of their electrochromic properties is conducted. The iPOP films based on viologens structure exhibit excellent electrochromic properties. In addition, the resulting iPOP films show high sensitivity to electrolyte ions of different sizes in the redox process. Electrochemical and electrochromic data of the iPOPs explain this phenomenon in detail. These results demonstrate that iPOPs of this type are ideal candidates as electrochromic materials due to their inherent porous structures and ion-rich properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...