Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631652

ABSTRACT

Spherical robots have fully wrapped shells, which enables them to walk well on complex terrains, such as swamps, grasslands and deserts. At present, path planning algorithms for spherical robots mainly focus on finding the shortest path between the initial position and the target position. In this paper, an improved A* algorithm considering energy consumption is proposed for the path planning of spherical robots. The optimization objective of this algorithm is to minimize both the energy consumption and path length of a spherical robot. A heuristic function constructed with the energy consumption estimation model (ECEM) and the distance estimation model (DEM) is used to determine the path cost of the A* algorithm. ECEM and DCM are established based on the force analysis of the spherical robot and the improved Euclidean distance of the grid map, respectively. The effectiveness of the proposed algorithm is verified by simulation analysis based on a 3D grid map and a spherical robot moving with uniform velocity. The results show that compared with traditional path planning algorithms, the proposed algorithm can minimize the energy consumption and path length of the spherical robot as much as possible.

2.
Front Cell Infect Microbiol ; 11: 647048, 2021.
Article in English | MEDLINE | ID: mdl-33842393

ABSTRACT

This study aimed at determining the beneficial effect of Clostridium butyricum (CB) RH2 on ceftriaxone-induced dysbacteriosis. To this purpose, BALB/c mice were exposed to ceftriaxone (400 mg/ml) or not (control) for 7 days, and administered a daily oral gavage of low-, and high-dose CB RH2 (108 and 1010 CFU/ml, respectively) for 2 weeks. CB RH2 altered the diversity of gut microbiota, changed the composition of gut microbiota in phylum and genus level, decreased the F/B ratio, and decreased the pro-inflammatory bacteria (Deferribacteres, Oscillibacter, Desulfovibrio, Mucispirillum and Parabacteroides) in ceftriaxone-treated mice. Additionally, CB RH2 improved colonic architecture and intestinal integrity by improving the mucous layer and the tight junction barrier. Furthermore, CB RH2 also mitigated intestinal inflammation through decreasing proinflammatory factors (TNF-α and COX-2) and increasing anti-inflammatory factors (IL-10). CB RH2 had direct effects on the expansion of CD4+ T cells in Peyer's patches (PPs) in vitro, which in turn affected their immune response upon challenge with ceftriaxone. All these data suggested that CB RH2 possessed the ability to modulate the intestinal mucosal and systemic immune system in limiting intestinal alterations to relieve ceftriaxone-induced dysbacteriosis.


Subject(s)
Clostridium butyricum , Dysbiosis , Animals , Ceftriaxone , Intestinal Mucosa , Intestines , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...