Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Rep ; 40(13): 111402, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170832

ABSTRACT

Remembering the location of a food or water source is essential for survival. Here, we reveal that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-to-LS signaling impairs spatial memory retention for food or water location. This neural pathway selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial memory for escape location in a negative reinforcement procedure, food intake, or social and olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the neural substrates controlling spatial memory are outcome specific based on reinforcer modality.


Subject(s)
Hippocampus , Spatial Memory , GABAergic Neurons , Hippocampus/metabolism , Neural Pathways/physiology , Spatial Memory/physiology , Water
2.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639199

ABSTRACT

The neuropeptide oxytocin is produced in the paraventricular hypothalamic nucleus and the supraoptic nucleus of the hypothalamus. In addition to its extensively studied influence on social behavior and reproductive function, central oxytocin signaling potently reduces food intake in both humans and animal models and has potential therapeutic use for obesity treatment. In this review, we highlight rodent model research that illuminates various neural, behavioral, and signaling mechanisms through which oxytocin's anorexigenic effects occur. The research supports a framework through which oxytocin reduces food intake via amplification of within-meal physiological satiation signals rather than by altering between-meal interoceptive hunger and satiety states. We also emphasize the distributed neural sites of action for oxytocin's effects on food intake and review evidence supporting the notion that central oxytocin is communicated throughout the brain, at least in part, through humoral-like volume transmission. Finally, we highlight mechanisms through which oxytocin interacts with various energy balance-associated neuropeptide and endocrine systems (e.g., agouti-related peptide, melanin-concentrating hormone, leptin), as well as the behavioral mechanisms through which oxytocin inhibits food intake, including effects on nutrient-specific ingestion, meal size control, food reward-motivated responses, and competing motivations.


Subject(s)
Eating/drug effects , Feeding Behavior/drug effects , Neurons/drug effects , Obesity/drug therapy , Oxytocin/pharmacology , Social Behavior , Animals , Energy Metabolism , Humans
3.
Horm Behav ; 126: 104855, 2020 11.
Article in English | MEDLINE | ID: mdl-32991888

ABSTRACT

Oxytocin potently reduces food intake and is a potential target system for obesity treatment. A better understanding of the behavioral and neurobiological mechanisms mediating oxytocin's anorexigenic effects may guide more effective obesity pharmacotherapy development. The present study examined the effects of central (lateral intracerebroventricular [ICV]) administration of oxytocin in rats on motivated responding for palatable food. Various conditioning procedures were employed to measure distinct appetitive behavioral domains, including food seeking in the absence of consumption (conditioned place preference expression), impulsive responding for food (differential reinforcement of low rates of responding), effort-based appetitive decision making (high-effort palatable vs. low-effort bland food), and sucrose reward value encoding following a motivational shift (incentive learning). Results reveal that ICV oxytocin potently reduces food-seeking behavior, impulsivity, and effort-based palatable food choice, yet does not influence encoding of sucrose reward value in the incentive learning task. To investigate a potential neurobiological mechanism mediating these behavioral outcomes, we utilized in vivo fiber photometry in ventral tegmental area (VTA) dopamine neurons to examine oxytocin's effect on phasic dopamine neuron responses to sucrose-predictive Pavlovian cues. Results reveal that ICV oxytocin significantly reduced food cue-evoked dopamine neuron activity. Collectively, these data reveal that central oxytocin signaling inhibits various obesity-relevant conditioned appetitive behaviors, potentially via reductions in food cue-driven phasic dopamine neural responses in the VTA.


Subject(s)
Cues , Feeding Behavior/drug effects , Motivation/drug effects , Oxytocin/administration & dosage , Reward , Ventral Tegmental Area/drug effects , Animals , Appetitive Behavior/drug effects , Conditioning, Classical/drug effects , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Food , Infusions, Intraventricular , Learning/drug effects , Male , Oxytocin/metabolism , Oxytocin/pharmacology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Transgenic , Reinforcement, Psychology , Signal Transduction/drug effects , Ventral Tegmental Area/metabolism
4.
Curr Biol ; 30(22): 4510-4518.e6, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32946754

ABSTRACT

Vagal afferent neuron (VAN) signaling sends information from the gut to the brain and is fundamental in the control of feeding behavior and metabolism [1]. Recent findings reveal that VAN signaling also plays a critical role in cognitive processes, including affective motivational behaviors and hippocampus (HPC)-dependent memory [2-5]. VANs, located in nodose ganglia, express receptors for various gut-derived peptide signals; however, the function of these receptors with regard to feeding behavior, metabolism, and memory control is poorly understood. We hypothesized that VAN-mediated processes are influenced by ghrelin, a stomach-derived orexigenic hormone, via communication to its receptor (GHSR) expressed on gut-innervating VANs. To examine this hypothesis, rats received nodose ganglia injections of an adeno-associated virus (AAV) expressing short hairpin RNAs targeting GHSR (or a control AAV) for RNAi-mediated VAN-specific GHSR knockdown. Results reveal that VAN GHSR knockdown induced various feeding and metabolic disturbances, including increased meal frequency, impaired glucose tolerance, delayed gastric emptying, and increased body weight compared to controls. Additionally, VAN-specific GHSR knockdown impaired HPC-dependent contextual episodic memory and reduced HPC brain-derived neurotrophic factor expression, but did not affect anxiety-like behavior or general activity levels. A functional role for endogenous VAN GHSR signaling was further confirmed by results revealing that VAN signaling is required for the hyperphagic effects of ghrelin administered at dark onset, and that gut-restricted ghrelin-induced increases in VAN firing rate require intact VAN GHSR expression. Collective results reveal that VAN GHSR signaling is required for both normal feeding and metabolic function as well as HPC-dependent memory.


Subject(s)
Ghrelin/metabolism , Hippocampus/physiology , Nodose Ganglion/metabolism , Receptors, Ghrelin/metabolism , Afferent Pathways/physiology , Animals , Body Weight/physiology , Brain-Derived Neurotrophic Factor/metabolism , Feeding Behavior/physiology , Gastric Emptying/physiology , Gene Knockdown Techniques , Glucose/metabolism , Hunger/physiology , Male , Memory, Episodic , Mice , Models, Animal , Neurons/metabolism , Nodose Ganglion/cytology , Nodose Ganglion/surgery , Rats , Rats, Transgenic , Receptors, Ghrelin/genetics , Vagotomy
5.
Neuropharmacology ; 178: 108270, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32795460

ABSTRACT

Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced in the lateral hypothalamus and zona incerta that increases food intake. The neuronal pathways and behavioral mechanisms mediating the orexigenic effects of MCH are poorly understood, as is the extent to which MCH-mediated feeding outcomes are sex-dependent. Here we investigate the hypothesis that MCH-producing neurons act in the nucleus accumbens shell (ACBsh) to promote feeding behavior and motivation for palatable food in a sex-dependent manner. We utilized ACBsh MCH receptor (MCH1R)-directed pharmacology as well as a dual virus chemogenetic approach to selectively activate MCH neurons that project to the ACBsh. Results reveal that both ACBsh MCH1R activation and activating ACBsh-projecting MCH neurons increase consumption of standard chow and palatable sucrose in male rats without affecting motivated operant responding for sucrose, general activity levels, or anxiety-like behavior. In contrast, food intake was not affected in female rats by either ACBsh MCH1R activation or ACBsh-projecting MCH neuron activation. To determine a mechanism for this sexual dimorphism, we investigated whether the orexigenic effect of ACBsh MCH1R activation is reduced by endogenous estradiol signaling. In ovariectomized female rats on a cyclic regimen of either estradiol (EB) or oil vehicle, ACBsh MCH1R activation increased feeding only in oil-treated rats, suggesting that EB attenuates the ability of ACBsh MCH signaling to promote food intake. Collective results show that MCH ACBsh signaling promotes feeding in an estrogen- and sex-dependent manner, thus identifying novel neurobiological mechanisms through which MCH and female sex hormones interact to influence food intake.


Subject(s)
Feeding Behavior/physiology , Hypothalamic Hormones/metabolism , Melanins/metabolism , Nucleus Accumbens/metabolism , Pituitary Hormones/metabolism , Sex Characteristics , Signal Transduction/physiology , Animals , Feeding Behavior/psychology , Female , Hypothalamic Hormones/analysis , Male , Melanins/analysis , Neural Pathways/chemistry , Neural Pathways/metabolism , Nucleus Accumbens/chemistry , Pituitary Hormones/analysis , Rats , Rats, Sprague-Dawley
6.
Biol Psychiatry ; 87(11): 1001-1011, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31836175

ABSTRACT

BACKGROUND: Memory and cognitive processes influence the amount of food consumed during a meal, yet the neurobiological mechanisms mediating these effects are poorly understood. The hippocampus (HPC) has recently emerged as a brain region that integrates feeding-relevant biological signals with learning and memory processes to regulate feeding. We investigated whether the gut-derived hormone ghrelin acts in the ventral HPC (vHPC) to increase meal size through interactions with gut-derived satiation signaling. METHODS: Interactions between vHPC ghrelin signaling, gut-derived satiation signaling, feeding, and interoceptive discrimination learning were assessed via rodent behavioral neuropharmacological approaches. Downstream neural pathways were identified using transsynaptic virus-based tracing strategies. RESULTS: vHPC ghrelin signaling counteracted the food intake-reducing effects produced by various peripheral biological satiation signals, including cholecystokinin, exendin-4 (a glucagon-like peptide-1 receptor agonist), amylin, and mechanical distension of the stomach. Furthermore, vHPC ghrelin signaling produced interoceptive cues that generalized to a perceived state of energy deficit, thereby providing a potential mechanism for the attenuation of satiation processing. Neuroanatomical tracing identified a multiorder connection from vHPC neurons to lateral hypothalamic area orexin (hypocretin)-producing neurons that project to the laterodorsal tegmental nucleus in the hindbrain. Lastly, vHPC ghrelin signaling increased spontaneous meal size via downstream orexin receptor signaling in the laterodorsal tegmental nucleus. CONCLUSIONS: vHPC ghrelin signaling increases meal size by counteracting the efficacy of various gut-derived satiation signals. These effects occur via downstream orexin signaling to the hindbrain laterodorsal tegmental nucleus, thereby highlighting a novel hippocampus-hypothalamus-hindbrain pathway regulating meal size control.


Subject(s)
Ghrelin , Hippocampus , Eating , Orexins , Rhombencephalon , Signal Transduction
7.
Neuroscience ; 447: 63-73, 2020 11 01.
Article in English | MEDLINE | ID: mdl-31738883

ABSTRACT

Central oxytocin potently reduces food intake and is being pursued as a clinical treatment for obesity. While sexually dimorphic effects have been described for the effects of oxytocin on several behavioral outcomes, the role of sex in central oxytocin modulation of feeding behavior is poorly understood. Here we investigated the effects of sex, estrous cycle stage, and female sex hormones (estrogen, progesterone) on central oxytocin-mediated reduction of food intake in rats. Results show that while intracerebroventricular (ICV) oxytocin potently reduces chow intake in both male and female rats, these effects were more pronounced in males than in females. We next examined whether estrous cycle stage affects oxytocin's food intake-reducing effects in females. Results show that ICV oxytocin administration significantly reduces food intake during all estrous cycle stages except proestrous, suggesting that female sex hormones may modulate the feeding effects of oxytocin. Indeed, additional results reveal that estrogen, but not progesterone replacement, in ovariectomized rats abolishes oxytocin-mediated reductions in chow intake. Lastly, oxytocin receptor mRNA (Oxtr) quantification (via quantitative PCR) and anatomical localization (via fluorescent in situ hybridization) in previously established sites of action for oxytocin control of food intake revealed comparable Oxtr expression between male and female rats, suggesting that observed sex and estrous differences may be based on variations in ligand availability and/or binding. Overall, these data show that estrogen reduces the effectiveness of central oxytocin to inhibit food intake, suggesting that sex hormones and estrous cycle should be considered in clinical investigations of oxytocin for obesity treatment.


Subject(s)
Eating , Estrus , Oxytocin , Sex Factors , Animals , Female , In Situ Hybridization, Fluorescence , Male , Oxytocin/pharmacology , Rats , Receptors, Oxytocin/genetics
8.
Nat Commun ; 10(1): 4923, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664021

ABSTRACT

Behavioral impulsivity is common in various psychiatric and metabolic disorders. Here we identify a hypothalamus to telencephalon neural pathway for regulating impulsivity involving communication from melanin-concentrating hormone (MCH)-expressing lateral hypothalamic neurons to the ventral hippocampus subregion (vHP). Results show that both site-specific upregulation (pharmacological or chemogenetic) and chronic downregulation (RNA interference) of MCH communication to the vHP increases impulsive responding in rats, indicating that perturbing this system in either direction elevates impulsivity. Furthermore, these effects are not secondary to either impaired timing accuracy, altered activity, or increased food motivation, consistent with a specific role for vHP MCH signaling in the regulation of impulse control. Results from additional functional connectivity and neural pathway tracing analyses implicate the nucleus accumbens as a putative downstream target of vHP MCH1 receptor-expressing neurons. Collectively, these data reveal a specific neural circuit that regulates impulsivity and provide evidence of a novel function for MCH on behavior.


Subject(s)
Hippocampus/metabolism , Hypothalamic Area, Lateral/metabolism , Hypothalamic Hormones/metabolism , Impulsive Behavior , Melanins/metabolism , Pituitary Hormones/metabolism , Animals , Hypothalamic Hormones/genetics , Male , Melanins/genetics , Neural Pathways , Neurons/metabolism , Nucleus Accumbens/metabolism , Pituitary Hormones/genetics , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism
9.
Nat Commun ; 9(1): 2181, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872139

ABSTRACT

The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem-septal pathway, thereby identifying a previously unknown role for the gut-brain axis in memory control.


Subject(s)
Gastrointestinal Tract/innervation , Hippocampus/physiology , Neural Pathways/physiology , Sensory Receptor Cells/physiology , Vagus Nerve/physiology , Animals , Cerebral Cortex/physiology , Male , Memory/physiology , Rats, Sprague-Dawley , Synapses/physiology , Telencephalon/physiology
10.
Cell Metab ; 28(1): 55-68.e7, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29861386

ABSTRACT

Classical mechanisms through which brain-derived molecules influence behavior include neuronal synaptic communication and neuroendocrine signaling. Here we provide evidence for an alternative neural communication mechanism that is relevant for food intake control involving cerebroventricular volume transmission of the neuropeptide melanin-concentrating hormone (MCH). Results reveal that the cerebral ventricles receive input from approximately one-third of MCH-producing neurons. Moreover, MCH cerebrospinal fluid (CSF) levels increase prior to nocturnal feeding and following chemogenetic activation of MCH-producing neurons. Utilizing a dual viral vector approach, additional results reveal that selective activation of putative CSF-projecting MCH neurons increases food intake. In contrast, food intake was reduced following immunosequestration of MCH endogenously present in CSF, indicating that neuropeptide transmission through the cerebral ventricles is a physiologically relevant signaling pathway for energy balance control. Collectively these results suggest that neural-CSF volume transmission signaling may be a common neurobiological mechanism for the control of fundamental behaviors.


Subject(s)
Cerebral Ventricles/metabolism , Eating/psychology , Feeding Behavior/physiology , Hypothalamic Hormones/cerebrospinal fluid , Melanins/cerebrospinal fluid , Neurons/metabolism , Pituitary Hormones/cerebrospinal fluid , Animals , Male , Neuropeptides/metabolism , Rats , Rats, Sprague-Dawley , Synaptic Transmission
11.
Physiol Behav ; 193(Pt B): 223-231, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29421588

ABSTRACT

Understanding the neurobiological controls of feeding behavior is critical in light of the growing obesity pandemic, a phenomenon largely based on excessive caloric consumption. Feeding behavior and its underlying biological substrates are frequently divided in the literature into two separate categories: [1] homeostatic processes involving energy intake based on caloric and other metabolic deficits, and [2] non-homeostatic processes that involve feeding driven by environmental and cognitive factors. The present review summarizes both historic and recent research examining the homeostatic regulation of feeding with specific emphasis on hypothalamic and hindbrain circuitry that monitor and regulate various metabolic signals. Regarding non-homeostatic controls, we highlight higher-order brain structures that integrate feeding-relevant external, interoceptive, and cognitive factors, including sensory cortical processing, learned associations in the hippocampus, and reward-based processing in the nucleus accumbens and interconnected mesolimbic circuitry. Finally, the current review focuses on recent evidence that challenges the traditional view that distinct neural systems regulate homeostatic vs. non-homeostatic controls of feeding behavior. Specifically, we highlight several feeding-related endocrine systems that act on both lower- and higher-order substrates, present evidence for the modulation of learned and cognitive feeding-relevant behaviors by lower-order brain regions, and highlight data showing that apparent homeostatic-based feeding behavior is modulated by higher-order brain regions. Our concluding perspective is that the classic dissociation between homeostatic and non-homeostatic constructs in relation to feeding behavior is limited with regards to understanding the complex integrated neurobiological systems that control energy balance.


Subject(s)
Brain/physiology , Feeding Behavior/physiology , Homeostasis/physiology , Animals , Humans
12.
Neuropharmacology ; 131: 487-496, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29191751

ABSTRACT

Social cues are potent regulators of feeding behavior, yet the neurobiological mechanisms through which social cues influence food intake are poorly understood. Here we investigate the hypothesis that the appetite-promoting gut-derived hormone, ghrelin, signals in the hippocampus to promote learned social aspects of feeding behavior. We utilized a procedure known as 'social transmission of food preference' (STFP) in which rats ('Observers') experience a social interaction with another rat ('Demonstrators') that recently consumed flavored/scented chow. STFP learning in Observer rats is indicated by a significant preference for the Demonstrator paired flavor of chow vs. a novel unpaired flavor of chow in a subsequent consumption choice test. Our results show that relative to vehicle treatment, ghrelin targeted to the ventral CA1 subregion of the hippocampus (vHP) enhanced STFP learning in rats. Additionally, STFP was impaired following peripheral injections of l-cysteine that reduce circulating ghrelin levels, suggesting that vHP ghrelin-mediated effects on STFP require peripheral ghrelin release. Finally, the endogenous relevance of vHP ghrelin receptor (GHSR-1A) signaling in STFP is supported by our data showing that STFP learning was eliminated following targeted viral vector RNA interference-mediated knockdown of vHP GHSR-1A mRNA. Control experiments indicate that vHP ghrelin-mediated STFP effects are not secondary to altered social exploration and food intake, nor to altered food preference learning based on nonsocial olfactory cues. Overall these data reveal a novel neurobiological system that promotes conditioned, social aspects of feeding behavior.


Subject(s)
Feeding Behavior/physiology , Feeding Behavior/psychology , Hippocampus/metabolism , Learning/physiology , Receptors, Ghrelin/metabolism , Social Behavior , Animals , Cysteine , Gene Knockdown Techniques , Ghrelin/metabolism , Male , Olfactory Perception/physiology , RNA Interference , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, Ghrelin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...