Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 670: 174-181, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761570

ABSTRACT

Interlayer intercalation engineering shows great feasibility to improve the structure stability of the layered oxides. Although high Zn-storage capability has been attained based on the pillar effect of multifarious intercalants, an in-depth understanding the synergistic effect of intercalated multiple metal ions is still in deficiency. Herein, alkali metal ion K+, alkaline earth metal ion Mg2+ and trivalent metal ion Al3+ are introduced into the VO interlayer of V2O5. Due to the different electronegativity and hydrated ion radius of K+, Mg2+ and Al3+, adjusting the relative proportions of these metal ions can achieve an appropriate interlayer spacing, stable layer structure and regular morphology, which facilitates the transport kinetics of Zn2+. Under the synergistic effect of pre-intercalated multi-metal ion, the optimal tri-metal ion intercalated hydrated V2O5 cathode exhibits a high specific capacity of 382.4 mAh g-1 at 0.5 A g-1, and long-term cycling stability with capacity retention of 86 % after 2000 cycles at the high current density of 10 A g-1. Ex-situ and kinetic characterizations reveal the fast charge transfer and reversible Zn2+ intercalation mechanism. The multi-ion engineering strategy provides an effective way to design desirable layered cathode materials for aqueous zinc-ion batteries.

3.
Adv Mater ; : e2400690, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373436

ABSTRACT

The stable phase transformation during electrochemical progress drives extensive research on vanadium-based polyanions in sodium-ion batteries (SIBs), especially Na3 V2 (PO4 )3 (NVP). And the electron transfer between V3+/4+ redox couple in NVP could be generally achieved, owing to the confined crystal variation during battery service. However, the more favorable V4+/5+ redox couple is still in hard-to-access situation due to the high barrier and further brings about the corresponding inefficiency in energy densities. In this work, the multilevel redox in NVP frame (MLNP) alters reaction pathway to undergo homeostatic solid solution process and breaks the high barrier of V4+/5+ at high voltage, taking by progressive transition metal (V, Fe, Ti, and Cr) redox couple. The diversified reaction paths across diffusion barriers could be realized by distinctive release/uptake of inactive Na1 site, confirmed by the calculations of density functional theory. Thereby its volume change is merely 1.73% during the multielectron-transfer process (≈2.77 electrons). MLNP cathode could achieve an impressive energy density of 440 Wh kg-1 , driving the leading development of MLNP among other NASICON structure SIBs. The integration of multiple redox couples with low strain modulates the reaction pathway effectively and will open a new avenue for fabricating high-performance cathodes in SIBs.

4.
ACS Appl Mater Interfaces ; 16(2): 2428-2437, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166369

ABSTRACT

Lithium batteries have been widely used in our daily lives for their high energy density and long-term stability. However, their safety problems are of paramount concern for consumers, which restricts their scale applications. Gel polymer electrolytes (GPEs) compensate for the defects of liquid leakage and lower ionic conductivity of solid electrolytes, which have attracted a lot of attention. Herein, a 3D interconnected highly porous structural gel electrolyte was prepared with alginate dressing as a host material, poly(ethylene oxide) (PEO), and a commercial liquid electrolyte. With rich polar functional groups and (CH2-CH2-O) segments on the polymer matrix, the transportation of Li+ is faster and uniform; thus, the formations of lithium dendrite were significantly inhibited. The cycle stability of symmetrical Li||Li batteries with modified composite electrolytes (SAA) is greatly improved, and the overpotential remains stable after more than 1000 h. Meanwhile, under the same conditions, the cycle performance of batteries with unmodified electrolytes is inferior and overpotentials are nearly 1 V after 100 h. Additionally, the capacity retention of Li||LiFePO4 with SAA is more than 95% after 200 cycles, while those of the others declined sharply. The alginate dressing-based GPEs can greatly enhance the mechanical and thermal stability of PEO-based GPEs, which provides an environmentally friendly avenue for gel electrolytes' applications in lithium batteries.

5.
Small Methods ; 7(2): e2201390, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36541738

ABSTRACT

The poor electrode kinetics and low conductivity of the LiMn0.8 Fe0.2 PO4 cathode seriously impede its practical application. Here, an effective strategy of boron-catalyzed graphitization carbon coating layer is proposed to stabilize the nanostructure and improve the kinetic properties and Li-storage capability of LiMn0.8 Fe0.2 PO4 nanocrystals for rechargeable lithium-ion batteries. The graphite-like BC3 is derived from B-catalyzed graphitization coating layers, which can not only effectively maintain the dynamic stability of the LiMn0.8 Fe0.2 PO4 nanostructure during cycling, but also plays an important role in enhancing the conductivity and Li+ migration kinetics of LiMn0.8 Fe0.2 PO4 @B-C. The optimized LiMn0.8 Fe0.2 PO4 @B-C exhibits the fastest intercalation/deintercalation kinetics, highest electrical conductivity (8.41 × 10-2 S cm-1 ), Li+ diffusion coefficient (6.17 × 10-12 cm2 s-1 ), and Li-storage performance among three comparison samples (B-C0, B-C6, and B-C9). The highly reversible properties and structural stability of LiMn0.8 Fe0.2 PO4 @B-C are further proved by operando XRD analysis. The B-catalyzed graphitization carbon coating strategy is expected to be an effective pathway to overcome the inherent drawbacks of the high-energy density LiMn0.8 Fe0.2 PO4 cathode and to improve other cathode materials with low-conductivity and poor electrode kinetics for rechargeable second batteries.

6.
iScience ; 23(8): 101404, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32777777

ABSTRACT

Metal organic framework (MOF) derivatives have been extensively used as bifunctional oxygen electrocatalysts. However, the utilization of active sites is still not satisfactory owing to the sluggish mass transport within their narrow pore channels. Herein, interconnected macroporous channels were constructed inside MOFs-derived Co-Nx-C electrocatalyst to unblock the mass transfer barrier. The as-synthesized electrocatalyst exhibits a honeycomb-like morphology with highly exposed Co-Nx-C active sites on carbon frame. Owing to the interconnected ordered macropores throughout the electrocatalyst, these active sites can smoothly "exhale/inhale" reactants and products, enhancing the accessibility of active sites and the reaction kinetics. As a result, the honeycomb-like Co-Nx-C displayed a potential difference of 0.773 V between the oxygen evolution reaction potential at 10 mA cm-2 and the oxygen reduction reaction half-wave potential, much lower than that of bulk-Co-Nx-C (0.842 V). The rational modification on porosity makes such honeycomb-like MOF derivative an excellent bifunctional oxygen electrocatalyst in rechargeable Zn-air batteries.

7.
Chem Soc Rev ; 49(15): 5407-5445, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32658219

ABSTRACT

Developing high-safety Li-metal anodes (LMAs) is extremely important for the application of high-energy Li-metal batteries (LMBs), especially Li-S and Li-O2 battery systems. However, the notorious Li-dendrite growth problem results in serious safety concerns for any energy storage application. Through a recent combination of interface-based science, nanotechnology-based solutions and characterization methods, the LMA is now primed for a technological boom. In this review, the recent emerging strategies and perspectives on LMAs are summarized, following which the current huge evolution in interfacial chemistry regulation, optimizing electrolyte components, designing a rational 'host' for lithium metal, optimizing "solid-state electrolytes" and other emerging strategies for developing high-safety LMAs is highlighted. Furthermore, several state-of-the-art in situ/operando synchrotron-based X-ray techniques for high safety LMB research are introduced. With the further development of LMAs in the future, subsequent application in high energy LMBs is to be expected.

8.
Adv Mater ; 30(21): e1706317, 2018 May.
Article in English | MEDLINE | ID: mdl-29611231

ABSTRACT

Incorporation of N,S-codoped nanotube-like carbon (N,S-NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α-MnS nanoparticles (NPs) are in situ encapsulated into N,S-NTC, preparing an advanced anode material (α-MnS@N,S-NTC) for lithium-ion/sodium-ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → ß phase transition of MnS NPs during the 1st cycle effectively promotes Li-storage properties, which is deduced by the studies of ex situ X-ray diffraction/high-resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α-MnS@N,S-NTC electrode delivers a high Li-storage capacity (1415 mA h g-1 at 50 mA g-1 ), excellent rate capability (430 mA h g-1 at 10 A g-1 ), and long-term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g-1 ) with retained morphology. In addition, the N,S-NTC-based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α-MnS@N,S-NTC also delivers high Na-storage capacity (536 mA h g-1 at 50 mA g-1 ) without the occurrence of such α → ß phase transition and excellent full-cell performances as coupling with commercial LiFePO4 and LiNi0.6 Co0.2 Mn0.2 O2 cathodes in LIBs as well as Na3 V2 (PO4 )2 O2 F cathode in SIBs.

9.
Chemistry ; 22(24): 8152-7, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27136376

ABSTRACT

Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions.

10.
Nanoscale Horiz ; 1(6): 496-501, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-32260714

ABSTRACT

In this communication, in order to develop superior electrode materials for advanced energy storage devices, a new strategy is proposed and then verified by the (Si@MnO)@C/RGO anode material for lithium ion batteries. The core idea of this strategy is the use of a positive cycling trend (gradually increasing Li-storage capacities of the MnO-based constituent during cycling) to compensate the negative one (gradually decreasing capacities of the Si anode) to achieve ultralong cycling stability. As demonstrated in both half and full cells, the as-prepared (Si@MnO)@C/RGO nanocomposite exhibits superior Li-storage properties in terms of ultralong cycling stability (no obvious increase or decrease of capacity when cycled at 3 A g-1 after 1500 cycles) and excellent high-rate capabilities (delivering a capacity of ca. 540 mA h g-1 at a high current density of 8 A g-1) as well as a good full-cell performance. In addition, the structure of the electrodes is stable after 200 cycles. Such a strategy provides a new idea to develop superior electrode materials for next-generation energy storage devices with ultralong cycling stabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...